![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltleii | Unicode version |
Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
lt.1 |
![]() ![]() ![]() ![]() |
lt.2 |
![]() ![]() ![]() ![]() |
ltlei.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ltleii |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltlei.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | lt.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | lt.2 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 2, 3 | ltlei 7268 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | ax-mp 7 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 ax-un 4190 ax-setind 4282 ax-cnex 7118 ax-resscn 7119 ax-pre-ltirr 7139 ax-pre-lttrn 7141 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-rab 2358 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-br 3788 df-opab 3842 df-xp 4371 df-cnv 4373 df-pnf 7206 df-mnf 7207 df-xr 7208 df-ltxr 7209 df-le 7210 |
This theorem is referenced by: 0le1 7641 1le2 8295 1le3 8298 halfge0 8303 decleh 8581 uzuzle23 8729 fzo0to42pr 9295 4bc2eq6 9787 resqrexlemga 10036 sqrt9 10061 sqrt2gt1lt2 10062 sqrtpclii 10143 flodddiv4 10467 ex-fl 10699 ex-gcd 10704 |
Copyright terms: Public domain | W3C validator |