![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltletrd | Unicode version |
Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
Ref | Expression |
---|---|
ltadd2d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltadd2d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltadd2d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltletrd.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltletrd.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ltletrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltletrd.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ltletrd.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ltadd2d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | ltadd2d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | ltadd2d.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | ltletr 7319 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 3, 4, 5, 6 | syl3anc 1170 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 2, 7 | mp2and 424 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-cnex 7181 ax-resscn 7182 ax-pre-ltwlin 7203 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-opab 3860 df-xp 4397 df-cnv 4399 df-pnf 7269 df-mnf 7270 df-xr 7271 df-ltxr 7272 df-le 7273 |
This theorem is referenced by: lelttrdi 7649 lediv12a 8091 rpgecl 8895 fznatpl1 9221 elfz1b 9235 exbtwnzlemstep 9386 ceiqle 9447 modqabs 9491 mulp1mod1 9499 expgt1 9663 leexp2a 9678 bernneq3 9744 expnbnd 9745 nn0opthlem2d 9797 cvg1nlemres 10072 resqrexlemlo 10100 resqrexlemnmsq 10104 resqrexlemga 10110 abssubap0 10177 icodiamlt 10267 dvdslelemd 10451 dvdsbnd 10555 znnen 10818 |
Copyright terms: Public domain | W3C validator |