ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmnqg Unicode version

Theorem ltmnqg 6556
Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
Assertion
Ref Expression
ltmnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )

Proof of Theorem ltmnqg
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6503 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 breq1 3794 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  A  <Q  [
<. z ,  w >. ]  ~Q  ) )
3 oveq2 5547 . . . 4  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( [ <. v ,  u >. ]  ~Q  .Q  [
<. x ,  y >. ]  ~Q  )  =  ( [ <. v ,  u >. ]  ~Q  .Q  A
) )
43breq1d 3801 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y
>. ]  ~Q  )  <Q 
( [ <. v ,  u >. ]  ~Q  .Q  [
<. z ,  w >. ]  ~Q  )  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A ) 
<Q  ( [ <. v ,  u >. ]  ~Q  .Q  [
<. z ,  w >. ]  ~Q  ) ) )
52, 4bibi12d 228 . 2  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  ) )  <-> 
( A  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A
)  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  ) ) ) )
6 breq2 3795 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( A  <Q  [ <. z ,  w >. ]  ~Q  <->  A 
<Q  B ) )
7 oveq2 5547 . . . 4  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( [ <. v ,  u >. ]  ~Q  .Q  [
<. z ,  w >. ]  ~Q  )  =  ( [ <. v ,  u >. ]  ~Q  .Q  B
) )
87breq2d 3803 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( ( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A ) 
<Q  ( [ <. v ,  u >. ]  ~Q  .Q  B ) ) )
96, 8bibi12d 228 . 2  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( ( A  <Q  [
<. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  ) )  <->  ( A  <Q  B  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  B
) ) ) )
10 oveq1 5546 . . . 4  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( [ <. v ,  u >. ]  ~Q  .Q  A )  =  ( C  .Q  A ) )
11 oveq1 5546 . . . 4  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( [ <. v ,  u >. ]  ~Q  .Q  B )  =  ( C  .Q  B ) )
1210, 11breq12d 3804 . . 3  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( ( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  B
)  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
1312bibi2d 225 . 2  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( ( A  <Q  B  <-> 
( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  B
) )  <->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) ) )
14 mulclpi 6483 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  e.  N. )
1514adantl 266 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  e.  N. )
16 simp1l 939 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  x  e.  N. )
17 simp2r 942 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  w  e.  N. )
1815, 16, 17caovcld 5681 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( x  .N  w )  e.  N. )
19 simp1r 940 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  y  e.  N. )
20 simp2l 941 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  z  e.  N. )
2115, 19, 20caovcld 5681 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( y  .N  z )  e.  N. )
22 mulclpi 6483 . . . . . . 7  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  ( v  .N  u
)  e.  N. )
23223ad2ant3 938 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  .N  u )  e.  N. )
24 ltmpig 6494 . . . . . 6  |-  ( ( ( x  .N  w
)  e.  N.  /\  ( y  .N  z
)  e.  N.  /\  ( v  .N  u
)  e.  N. )  ->  ( ( x  .N  w )  <N  (
y  .N  z )  <-> 
( ( v  .N  u )  .N  (
x  .N  w ) )  <N  ( (
v  .N  u )  .N  ( y  .N  z ) ) ) )
2518, 21, 23, 24syl3anc 1146 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  w ) 
<N  ( y  .N  z
)  <->  ( ( v  .N  u )  .N  ( x  .N  w
) )  <N  (
( v  .N  u
)  .N  ( y  .N  z ) ) ) )
26 simp3l 943 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  v  e.  N. )
27 simp3r 944 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  u  e.  N. )
28 mulcompig 6486 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  =  ( g  .N  f ) )
2928adantl 266 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  =  ( g  .N  f ) )
30 mulasspig 6487 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
3130adantl 266 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N.  /\  h  e.  N. ) )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
3226, 16, 27, 29, 31, 17, 15caov4d 5712 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
v  .N  x )  .N  ( u  .N  w ) )  =  ( ( v  .N  u )  .N  (
x  .N  w ) ) )
3327, 19, 26, 29, 31, 20, 15caov4d 5712 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  y )  .N  ( v  .N  z ) )  =  ( ( u  .N  v )  .N  (
y  .N  z ) ) )
34 mulcompig 6486 . . . . . . . . . 10  |-  ( ( u  e.  N.  /\  v  e.  N. )  ->  ( u  .N  v
)  =  ( v  .N  u ) )
3534oveq1d 5554 . . . . . . . . 9  |-  ( ( u  e.  N.  /\  v  e.  N. )  ->  ( ( u  .N  v )  .N  (
y  .N  z ) )  =  ( ( v  .N  u )  .N  ( y  .N  z ) ) )
3635ancoms 259 . . . . . . . 8  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  ( ( u  .N  v )  .N  (
y  .N  z ) )  =  ( ( v  .N  u )  .N  ( y  .N  z ) ) )
37363ad2ant3 938 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  v )  .N  ( y  .N  z ) )  =  ( ( v  .N  u )  .N  (
y  .N  z ) ) )
3833, 37eqtrd 2088 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  y )  .N  ( v  .N  z ) )  =  ( ( v  .N  u )  .N  (
y  .N  z ) ) )
3932, 38breq12d 3804 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( v  .N  x
)  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
v  .N  z ) )  <->  ( ( v  .N  u )  .N  ( x  .N  w
) )  <N  (
( v  .N  u
)  .N  ( y  .N  z ) ) ) )
4025, 39bitr4d 184 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  w ) 
<N  ( y  .N  z
)  <->  ( ( v  .N  x )  .N  ( u  .N  w
) )  <N  (
( u  .N  y
)  .N  ( v  .N  z ) ) ) )
41 ordpipqqs 6529 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( x  .N  w )  <N  (
y  .N  z ) ) )
42413adant3 935 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( x  .N  w )  <N  (
y  .N  z ) ) )
4315, 26, 16caovcld 5681 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  .N  x )  e.  N. )
4415, 27, 19caovcld 5681 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  y )  e.  N. )
4515, 26, 20caovcld 5681 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  .N  z )  e.  N. )
4615, 27, 17caovcld 5681 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  w )  e.  N. )
47 ordpipqqs 6529 . . . . 5  |-  ( ( ( ( v  .N  x )  e.  N.  /\  ( u  .N  y
)  e.  N. )  /\  ( ( v  .N  z )  e.  N.  /\  ( u  .N  w
)  e.  N. )
)  ->  ( [ <. ( v  .N  x
) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  <->  ( ( v  .N  x
)  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
v  .N  z ) ) ) )
4843, 44, 45, 46, 47syl22anc 1147 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. ( v  .N  x
) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  <->  ( ( v  .N  x
)  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
v  .N  z ) ) ) )
4940, 42, 483bitr4d 213 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. ( v  .N  z ) ,  ( u  .N  w )
>. ]  ~Q  ) )
50 mulpipqqs 6528 . . . . . 6  |-  ( ( ( v  e.  N.  /\  u  e.  N. )  /\  ( x  e.  N.  /\  y  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  )
5150ancoms 259 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  )
52513adant2 934 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  )
53 mulpipqqs 6528 . . . . . 6  |-  ( ( ( v  e.  N.  /\  u  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  )
5453ancoms 259 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  )
55543adant1 933 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  )
5652, 55breq12d 3804 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  <->  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. ( v  .N  z ) ,  ( u  .N  w )
>. ]  ~Q  ) )
5749, 56bitr4d 184 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  ) ) )
581, 5, 9, 13, 573ecoptocl 6225 1  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    /\ w3a 896    = wceq 1259    e. wcel 1409   <.cop 3405   class class class wbr 3791  (class class class)co 5539   [cec 6134   N.cnpi 6427    .N cmi 6429    <N clti 6430    ~Q ceq 6434   Q.cnq 6435    .Q cmq 6438    <Q cltq 6440
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-mi 6461  df-lti 6462  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-mqqs 6505  df-ltnqqs 6508
This theorem is referenced by:  ltmnqi  6558  lt2mulnq  6560  ltaddnq  6562  prarloclemarch  6573  prarloclemarch2  6574  ltrnqg  6575  prarloclemlt  6648  addnqprllem  6682  addnqprulem  6683  appdivnq  6718  mulnqprl  6723  mulnqpru  6724  mullocprlem  6725  mulclpr  6727  distrlem4prl  6739  distrlem4pru  6740  1idprl  6745  1idpru  6746  recexprlem1ssl  6788  recexprlem1ssu  6789
  Copyright terms: Public domain W3C validator