ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmnqg Unicode version

Theorem ltmnqg 6705
Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
Assertion
Ref Expression
ltmnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )

Proof of Theorem ltmnqg
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6652 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 breq1 3808 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  A  <Q  [
<. z ,  w >. ]  ~Q  ) )
3 oveq2 5571 . . . 4  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( [ <. v ,  u >. ]  ~Q  .Q  [
<. x ,  y >. ]  ~Q  )  =  ( [ <. v ,  u >. ]  ~Q  .Q  A
) )
43breq1d 3815 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y
>. ]  ~Q  )  <Q 
( [ <. v ,  u >. ]  ~Q  .Q  [
<. z ,  w >. ]  ~Q  )  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A ) 
<Q  ( [ <. v ,  u >. ]  ~Q  .Q  [
<. z ,  w >. ]  ~Q  ) ) )
52, 4bibi12d 233 . 2  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  ) )  <-> 
( A  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A
)  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  ) ) ) )
6 breq2 3809 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( A  <Q  [ <. z ,  w >. ]  ~Q  <->  A 
<Q  B ) )
7 oveq2 5571 . . . 4  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( [ <. v ,  u >. ]  ~Q  .Q  [
<. z ,  w >. ]  ~Q  )  =  ( [ <. v ,  u >. ]  ~Q  .Q  B
) )
87breq2d 3817 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( ( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A ) 
<Q  ( [ <. v ,  u >. ]  ~Q  .Q  B ) ) )
96, 8bibi12d 233 . 2  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( ( A  <Q  [
<. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  ) )  <->  ( A  <Q  B  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  B
) ) ) )
10 oveq1 5570 . . . 4  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( [ <. v ,  u >. ]  ~Q  .Q  A )  =  ( C  .Q  A ) )
11 oveq1 5570 . . . 4  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( [ <. v ,  u >. ]  ~Q  .Q  B )  =  ( C  .Q  B ) )
1210, 11breq12d 3818 . . 3  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( ( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  B
)  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
1312bibi2d 230 . 2  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( ( A  <Q  B  <-> 
( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  B
) )  <->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) ) )
14 mulclpi 6632 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  e.  N. )
1514adantl 271 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  e.  N. )
16 simp1l 963 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  x  e.  N. )
17 simp2r 966 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  w  e.  N. )
1815, 16, 17caovcld 5705 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( x  .N  w )  e.  N. )
19 simp1r 964 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  y  e.  N. )
20 simp2l 965 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  z  e.  N. )
2115, 19, 20caovcld 5705 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( y  .N  z )  e.  N. )
22 mulclpi 6632 . . . . . . 7  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  ( v  .N  u
)  e.  N. )
23223ad2ant3 962 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  .N  u )  e.  N. )
24 ltmpig 6643 . . . . . 6  |-  ( ( ( x  .N  w
)  e.  N.  /\  ( y  .N  z
)  e.  N.  /\  ( v  .N  u
)  e.  N. )  ->  ( ( x  .N  w )  <N  (
y  .N  z )  <-> 
( ( v  .N  u )  .N  (
x  .N  w ) )  <N  ( (
v  .N  u )  .N  ( y  .N  z ) ) ) )
2518, 21, 23, 24syl3anc 1170 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  w ) 
<N  ( y  .N  z
)  <->  ( ( v  .N  u )  .N  ( x  .N  w
) )  <N  (
( v  .N  u
)  .N  ( y  .N  z ) ) ) )
26 simp3l 967 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  v  e.  N. )
27 simp3r 968 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  u  e.  N. )
28 mulcompig 6635 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  =  ( g  .N  f ) )
2928adantl 271 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  =  ( g  .N  f ) )
30 mulasspig 6636 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
3130adantl 271 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N.  /\  h  e.  N. ) )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
3226, 16, 27, 29, 31, 17, 15caov4d 5736 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
v  .N  x )  .N  ( u  .N  w ) )  =  ( ( v  .N  u )  .N  (
x  .N  w ) ) )
3327, 19, 26, 29, 31, 20, 15caov4d 5736 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  y )  .N  ( v  .N  z ) )  =  ( ( u  .N  v )  .N  (
y  .N  z ) ) )
34 mulcompig 6635 . . . . . . . . . 10  |-  ( ( u  e.  N.  /\  v  e.  N. )  ->  ( u  .N  v
)  =  ( v  .N  u ) )
3534oveq1d 5578 . . . . . . . . 9  |-  ( ( u  e.  N.  /\  v  e.  N. )  ->  ( ( u  .N  v )  .N  (
y  .N  z ) )  =  ( ( v  .N  u )  .N  ( y  .N  z ) ) )
3635ancoms 264 . . . . . . . 8  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  ( ( u  .N  v )  .N  (
y  .N  z ) )  =  ( ( v  .N  u )  .N  ( y  .N  z ) ) )
37363ad2ant3 962 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  v )  .N  ( y  .N  z ) )  =  ( ( v  .N  u )  .N  (
y  .N  z ) ) )
3833, 37eqtrd 2115 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  y )  .N  ( v  .N  z ) )  =  ( ( v  .N  u )  .N  (
y  .N  z ) ) )
3932, 38breq12d 3818 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( v  .N  x
)  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
v  .N  z ) )  <->  ( ( v  .N  u )  .N  ( x  .N  w
) )  <N  (
( v  .N  u
)  .N  ( y  .N  z ) ) ) )
4025, 39bitr4d 189 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  w ) 
<N  ( y  .N  z
)  <->  ( ( v  .N  x )  .N  ( u  .N  w
) )  <N  (
( u  .N  y
)  .N  ( v  .N  z ) ) ) )
41 ordpipqqs 6678 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( x  .N  w )  <N  (
y  .N  z ) ) )
42413adant3 959 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( x  .N  w )  <N  (
y  .N  z ) ) )
4315, 26, 16caovcld 5705 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  .N  x )  e.  N. )
4415, 27, 19caovcld 5705 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  y )  e.  N. )
4515, 26, 20caovcld 5705 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  .N  z )  e.  N. )
4615, 27, 17caovcld 5705 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  w )  e.  N. )
47 ordpipqqs 6678 . . . . 5  |-  ( ( ( ( v  .N  x )  e.  N.  /\  ( u  .N  y
)  e.  N. )  /\  ( ( v  .N  z )  e.  N.  /\  ( u  .N  w
)  e.  N. )
)  ->  ( [ <. ( v  .N  x
) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  <->  ( ( v  .N  x
)  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
v  .N  z ) ) ) )
4843, 44, 45, 46, 47syl22anc 1171 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. ( v  .N  x
) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  <->  ( ( v  .N  x
)  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
v  .N  z ) ) ) )
4940, 42, 483bitr4d 218 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. ( v  .N  z ) ,  ( u  .N  w )
>. ]  ~Q  ) )
50 mulpipqqs 6677 . . . . . 6  |-  ( ( ( v  e.  N.  /\  u  e.  N. )  /\  ( x  e.  N.  /\  y  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  )
5150ancoms 264 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  )
52513adant2 958 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  )
53 mulpipqqs 6677 . . . . . 6  |-  ( ( ( v  e.  N.  /\  u  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  )
5453ancoms 264 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  )
55543adant1 957 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  )
5652, 55breq12d 3818 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  <->  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. ( v  .N  z ) ,  ( u  .N  w )
>. ]  ~Q  ) )
5749, 56bitr4d 189 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  ) ) )
581, 5, 9, 13, 573ecoptocl 6282 1  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    = wceq 1285    e. wcel 1434   <.cop 3419   class class class wbr 3805  (class class class)co 5563   [cec 6191   N.cnpi 6576    .N cmi 6578    <N clti 6579    ~Q ceq 6583   Q.cnq 6584    .Q cmq 6587    <Q cltq 6589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-eprel 4072  df-id 4076  df-iord 4149  df-on 4151  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-irdg 6039  df-oadd 6089  df-omul 6090  df-er 6193  df-ec 6195  df-qs 6199  df-ni 6608  df-mi 6610  df-lti 6611  df-mpq 6649  df-enq 6651  df-nqqs 6652  df-mqqs 6654  df-ltnqqs 6657
This theorem is referenced by:  ltmnqi  6707  lt2mulnq  6709  ltaddnq  6711  prarloclemarch  6722  prarloclemarch2  6723  ltrnqg  6724  prarloclemlt  6797  addnqprllem  6831  addnqprulem  6832  appdivnq  6867  mulnqprl  6872  mulnqpru  6873  mullocprlem  6874  mulclpr  6876  distrlem4prl  6888  distrlem4pru  6889  1idprl  6894  1idpru  6895  recexprlem1ssl  6937  recexprlem1ssu  6938
  Copyright terms: Public domain W3C validator