ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnnnq Unicode version

Theorem ltnnnq 6752
Description: Ordering of positive integers via  <N or  <Q is equivalent. (Contributed by Jim Kingdon, 3-Oct-2020.)
Assertion
Ref Expression
ltnnnq  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  [ <. A ,  1o >. ]  ~Q  <Q  [
<. B ,  1o >. ]  ~Q  ) )

Proof of Theorem ltnnnq
StepHypRef Expression
1 simpl 107 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  A  e.  N. )
2 1pi 6644 . . . 4  |-  1o  e.  N.
32a1i 9 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  1o  e.  N. )
4 simpr 108 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  B  e.  N. )
5 ordpipqqs 6703 . . 3  |-  ( ( ( A  e.  N.  /\  1o  e.  N. )  /\  ( B  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. A ,  1o >. ]  ~Q  <Q  [ <. B ,  1o >. ]  ~Q  <->  ( A  .N  1o )  <N  ( 1o  .N  B ) ) )
61, 3, 4, 3, 5syl22anc 1171 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( [ <. A ,  1o >. ]  ~Q  <Q  [
<. B ,  1o >. ]  ~Q  <->  ( A  .N  1o )  <N  ( 1o 
.N  B ) ) )
7 mulidpi 6647 . . . 4  |-  ( A  e.  N.  ->  ( A  .N  1o )  =  A )
81, 7syl 14 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  1o )  =  A )
9 mulcompig 6660 . . . . 5  |-  ( ( 1o  e.  N.  /\  B  e.  N. )  ->  ( 1o  .N  B
)  =  ( B  .N  1o ) )
102, 4, 9sylancr 405 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 1o  .N  B
)  =  ( B  .N  1o ) )
11 mulidpi 6647 . . . . 5  |-  ( B  e.  N.  ->  ( B  .N  1o )  =  B )
124, 11syl 14 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( B  .N  1o )  =  B )
1310, 12eqtrd 2115 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 1o  .N  B
)  =  B )
148, 13breq12d 3819 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  .N  1o )  <N  ( 1o 
.N  B )  <->  A  <N  B ) )
156, 14bitr2d 187 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  [ <. A ,  1o >. ]  ~Q  <Q  [
<. B ,  1o >. ]  ~Q  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   <.cop 3420   class class class wbr 3806  (class class class)co 5565   1oc1o 6080   [cec 6193   N.cnpi 6601    .N cmi 6603    <N clti 6604    ~Q ceq 6608    <Q cltq 6614
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3914  ax-sep 3917  ax-nul 3925  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-iinf 4358
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2613  df-sbc 2826  df-csb 2919  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-iun 3701  df-br 3807  df-opab 3861  df-mpt 3862  df-tr 3897  df-eprel 4073  df-id 4077  df-iord 4150  df-on 4152  df-suc 4155  df-iom 4361  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-f1 4958  df-fo 4959  df-f1o 4960  df-fv 4961  df-ov 5568  df-oprab 5569  df-mpt2 5570  df-1st 5820  df-2nd 5821  df-recs 5976  df-irdg 6041  df-1o 6087  df-oadd 6091  df-omul 6092  df-er 6195  df-ec 6197  df-qs 6201  df-ni 6633  df-mi 6635  df-lti 6636  df-enq 6676  df-nqqs 6677  df-ltnqqs 6682
This theorem is referenced by:  caucvgprlemk  6994  caucvgprprlemk  7012  ltrennb  7161
  Copyright terms: Public domain W3C validator