ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpiord Unicode version

Theorem ltpiord 7095
Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltpiord  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )

Proof of Theorem ltpiord
StepHypRef Expression
1 df-lti 7083 . . 3  |-  <N  =  (  _E  i^i  ( N.  X.  N. ) )
21breqi 3905 . 2  |-  ( A 
<N  B  <->  A (  _E  i^i  ( N.  X.  N. )
) B )
3 brinxp 4577 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  _E  B  <->  A (  _E  i^i  ( N.  X.  N. ) ) B ) )
4 epelg 4182 . . . 4  |-  ( B  e.  N.  ->  ( A  _E  B  <->  A  e.  B ) )
54adantl 275 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  _E  B  <->  A  e.  B ) )
63, 5bitr3d 189 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A (  _E 
i^i  ( N.  X.  N. ) ) B  <->  A  e.  B ) )
72, 6syl5bb 191 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1465    i^i cin 3040   class class class wbr 3899    _E cep 4179    X. cxp 4507   N.cnpi 7048    <N clti 7051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-br 3900  df-opab 3960  df-eprel 4181  df-xp 4515  df-lti 7083
This theorem is referenced by:  ltsopi  7096  pitric  7097  pitri3or  7098  ltdcpi  7099  ltexpi  7113  ltapig  7114  ltmpig  7115  1lt2pi  7116  nlt1pig  7117  archnqq  7193  prarloclemarch2  7195  prarloclemlt  7269  prarloclemn  7275
  Copyright terms: Public domain W3C validator