ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltxr Unicode version

Theorem ltxr 8927
Description: The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltxr  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  ( (
( ( A  e.  RR  /\  B  e.  RR )  /\  A  <RR  B )  \/  ( A  = -oo  /\  B  = +oo ) )  \/  ( ( A  e.  RR  /\  B  = +oo )  \/  ( A  = -oo  /\  B  e.  RR ) ) ) ) )

Proof of Theorem ltxr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 3798 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  <RR  y  <->  A  <RR  B ) )
2 df-3an 922 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y )  <->  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) )
32opabbii 3853 . . . . 5  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) }
41, 3brab2ga 4441 . . . 4  |-  ( A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  <->  ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <RR  B ) )
54a1i 9 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  <->  ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <RR  B ) ) )
6 brun 3839 . . . 4  |-  ( A ( ( ( RR  u.  { -oo }
)  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B  <->  ( A
( ( RR  u.  { -oo } )  X. 
{ +oo } ) B  \/  A ( { -oo }  X.  RR ) B ) )
7 brxp 4401 . . . . . . 7  |-  ( A ( ( RR  u.  { -oo } )  X. 
{ +oo } ) B  <-> 
( A  e.  ( RR  u.  { -oo } )  /\  B  e. 
{ +oo } ) )
8 elun 3114 . . . . . . . . . . 11  |-  ( A  e.  ( RR  u.  { -oo } )  <->  ( A  e.  RR  \/  A  e. 
{ -oo } ) )
9 orcom 680 . . . . . . . . . . 11  |-  ( ( A  e.  RR  \/  A  e.  { -oo }
)  <->  ( A  e. 
{ -oo }  \/  A  e.  RR ) )
108, 9bitri 182 . . . . . . . . . 10  |-  ( A  e.  ( RR  u.  { -oo } )  <->  ( A  e.  { -oo }  \/  A  e.  RR )
)
11 elsng 3421 . . . . . . . . . . 11  |-  ( A  e.  RR*  ->  ( A  e.  { -oo }  <->  A  = -oo ) )
1211orbi1d 738 . . . . . . . . . 10  |-  ( A  e.  RR*  ->  ( ( A  e.  { -oo }  \/  A  e.  RR ) 
<->  ( A  = -oo  \/  A  e.  RR ) ) )
1310, 12syl5bb 190 . . . . . . . . 9  |-  ( A  e.  RR*  ->  ( A  e.  ( RR  u.  { -oo } )  <->  ( A  = -oo  \/  A  e.  RR ) ) )
14 elsng 3421 . . . . . . . . 9  |-  ( B  e.  RR*  ->  ( B  e.  { +oo }  <->  B  = +oo ) )
1513, 14bi2anan9 571 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A  e.  ( RR  u.  { -oo } )  /\  B  e. 
{ +oo } )  <->  ( ( A  = -oo  \/  A  e.  RR )  /\  B  = +oo ) ) )
16 andir 766 . . . . . . . 8  |-  ( ( ( A  = -oo  \/  A  e.  RR )  /\  B  = +oo ) 
<->  ( ( A  = -oo  /\  B  = +oo )  \/  ( A  e.  RR  /\  B  = +oo ) ) )
1715, 16syl6bb 194 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A  e.  ( RR  u.  { -oo } )  /\  B  e. 
{ +oo } )  <->  ( ( A  = -oo  /\  B  = +oo )  \/  ( A  e.  RR  /\  B  = +oo ) ) ) )
187, 17syl5bb 190 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A ( ( RR  u.  { -oo }
)  X.  { +oo } ) B  <->  ( ( A  = -oo  /\  B  = +oo )  \/  ( A  e.  RR  /\  B  = +oo ) ) ) )
19 brxp 4401 . . . . . . 7  |-  ( A ( { -oo }  X.  RR ) B  <->  ( A  e.  { -oo }  /\  B  e.  RR )
)
2011anbi1d 453 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( ( A  e.  { -oo }  /\  B  e.  RR ) 
<->  ( A  = -oo  /\  B  e.  RR ) ) )
2120adantr 270 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A  e.  { -oo }  /\  B  e.  RR )  <->  ( A  = -oo  /\  B  e.  RR ) ) )
2219, 21syl5bb 190 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A ( { -oo }  X.  RR ) B  <-> 
( A  = -oo  /\  B  e.  RR ) ) )
2318, 22orbi12d 740 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A ( ( RR  u.  { -oo } )  X.  { +oo } ) B  \/  A
( { -oo }  X.  RR ) B )  <-> 
( ( ( A  = -oo  /\  B  = +oo )  \/  ( A  e.  RR  /\  B  = +oo ) )  \/  ( A  = -oo  /\  B  e.  RR ) ) ) )
24 orass 717 . . . . 5  |-  ( ( ( ( A  = -oo  /\  B  = +oo )  \/  ( A  e.  RR  /\  B  = +oo ) )  \/  ( A  = -oo  /\  B  e.  RR ) )  <->  ( ( A  = -oo  /\  B  = +oo )  \/  (
( A  e.  RR  /\  B  = +oo )  \/  ( A  = -oo  /\  B  e.  RR ) ) ) )
2523, 24syl6bb 194 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A ( ( RR  u.  { -oo } )  X.  { +oo } ) B  \/  A
( { -oo }  X.  RR ) B )  <-> 
( ( A  = -oo  /\  B  = +oo )  \/  (
( A  e.  RR  /\  B  = +oo )  \/  ( A  = -oo  /\  B  e.  RR ) ) ) ) )
266, 25syl5bb 190 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B  <->  ( ( A  = -oo  /\  B  = +oo )  \/  (
( A  e.  RR  /\  B  = +oo )  \/  ( A  = -oo  /\  B  e.  RR ) ) ) ) )
275, 26orbi12d 740 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  \/  A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <RR  B )  \/  (
( A  = -oo  /\  B  = +oo )  \/  ( ( A  e.  RR  /\  B  = +oo )  \/  ( A  = -oo  /\  B  e.  RR ) ) ) ) ) )
28 df-ltxr 7220 . . . 4  |-  <  =  ( { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) )
2928breqi 3799 . . 3  |-  ( A  <  B  <->  A ( { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) ) B )
30 brun 3839 . . 3  |-  ( A ( { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  ( ( ( RR  u.  { -oo }
)  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) ) B  <-> 
( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  \/  A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B ) )
3129, 30bitri 182 . 2  |-  ( A  <  B  <->  ( A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  \/  A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B ) )
32 orass 717 . 2  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <RR  B )  \/  ( A  = -oo  /\  B  = +oo ) )  \/  ( ( A  e.  RR  /\  B  = +oo )  \/  ( A  = -oo  /\  B  e.  RR ) ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <RR  B )  \/  (
( A  = -oo  /\  B  = +oo )  \/  ( ( A  e.  RR  /\  B  = +oo )  \/  ( A  = -oo  /\  B  e.  RR ) ) ) ) )
3327, 31, 323bitr4g 221 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  ( (
( ( A  e.  RR  /\  B  e.  RR )  /\  A  <RR  B )  \/  ( A  = -oo  /\  B  = +oo ) )  \/  ( ( A  e.  RR  /\  B  = +oo )  \/  ( A  = -oo  /\  B  e.  RR ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662    /\ w3a 920    = wceq 1285    e. wcel 1434    u. cun 2972   {csn 3406   class class class wbr 3793   {copab 3846    X. cxp 4369   RRcr 7042    <RR cltrr 7047   +oocpnf 7212   -oocmnf 7213   RR*cxr 7214    < clt 7215
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-xp 4377  df-ltxr 7220
This theorem is referenced by:  xrltnr  8931  ltpnf  8932  mnflt  8934  mnfltpnf  8936  pnfnlt  8938  nltmnf  8939
  Copyright terms: Public domain W3C validator