ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1exp1 Unicode version

Theorem m1exp1 11598
Description: Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.)
Assertion
Ref Expression
m1exp1  |-  ( N  e.  ZZ  ->  (
( -u 1 ^ N
)  =  1  <->  2 
||  N ) )

Proof of Theorem m1exp1
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 2z 9082 . . . . . . 7  |-  2  e.  ZZ
2 divides 11495 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  ||  N  <->  E. n  e.  ZZ  (
n  x.  2 )  =  N ) )
31, 2mpan 420 . . . . . 6  |-  ( N  e.  ZZ  ->  (
2  ||  N  <->  E. n  e.  ZZ  ( n  x.  2 )  =  N ) )
4 oveq2 5782 . . . . . . . . 9  |-  ( N  =  ( n  x.  2 )  ->  ( -u 1 ^ N )  =  ( -u 1 ^ ( n  x.  2 ) ) )
54eqcoms 2142 . . . . . . . 8  |-  ( ( n  x.  2 )  =  N  ->  ( -u 1 ^ N )  =  ( -u 1 ^ ( n  x.  2 ) ) )
6 zcn 9059 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  n  e.  CC )
7 2cnd 8793 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  2  e.  CC )
86, 7mulcomd 7787 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  (
n  x.  2 )  =  ( 2  x.  n ) )
98oveq2d 5790 . . . . . . . . 9  |-  ( n  e.  ZZ  ->  ( -u 1 ^ ( n  x.  2 ) )  =  ( -u 1 ^ ( 2  x.  n ) ) )
10 m1expeven 10340 . . . . . . . . 9  |-  ( n  e.  ZZ  ->  ( -u 1 ^ ( 2  x.  n ) )  =  1 )
119, 10eqtrd 2172 . . . . . . . 8  |-  ( n  e.  ZZ  ->  ( -u 1 ^ ( n  x.  2 ) )  =  1 )
125, 11sylan9eqr 2194 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  ( n  x.  2
)  =  N )  ->  ( -u 1 ^ N )  =  1 )
1312rexlimiva 2544 . . . . . 6  |-  ( E. n  e.  ZZ  (
n  x.  2 )  =  N  ->  ( -u 1 ^ N )  =  1 )
143, 13syl6bi 162 . . . . 5  |-  ( N  e.  ZZ  ->  (
2  ||  N  ->  (
-u 1 ^ N
)  =  1 ) )
1514impcom 124 . . . 4  |-  ( ( 2  ||  N  /\  N  e.  ZZ )  ->  ( -u 1 ^ N )  =  1 )
16 simpl 108 . . . 4  |-  ( ( 2  ||  N  /\  N  e.  ZZ )  ->  2  ||  N )
1715, 162thd 174 . . 3  |-  ( ( 2  ||  N  /\  N  e.  ZZ )  ->  ( ( -u 1 ^ N )  =  1  <->  2  ||  N ) )
1817expcom 115 . 2  |-  ( N  e.  ZZ  ->  (
2  ||  N  ->  ( ( -u 1 ^ N )  =  1  <->  2  ||  N ) ) )
19 1ne0 8788 . . . . . 6  |-  1  =/=  0
20 eqcom 2141 . . . . . . 7  |-  ( -u
1  =  1  <->  1  =  -u 1 )
21 ax-1cn 7713 . . . . . . . 8  |-  1  e.  CC
2221eqnegi 8501 . . . . . . 7  |-  ( 1  =  -u 1  <->  1  = 
0 )
2320, 22bitri 183 . . . . . 6  |-  ( -u
1  =  1  <->  1  =  0 )
2419, 23nemtbir 2397 . . . . 5  |-  -.  -u 1  =  1
25 odd2np1 11570 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
26 oveq2 5782 . . . . . . . . . . 11  |-  ( N  =  ( ( 2  x.  n )  +  1 )  ->  ( -u 1 ^ N )  =  ( -u 1 ^ ( ( 2  x.  n )  +  1 ) ) )
2726eqcoms 2142 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( -u 1 ^ N )  =  ( -u 1 ^ ( ( 2  x.  n )  +  1 ) ) )
28 neg1cn 8825 . . . . . . . . . . . . 13  |-  -u 1  e.  CC
2928a1i 9 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  -u 1  e.  CC )
30 neg1ap0 8829 . . . . . . . . . . . . 13  |-  -u 1 #  0
3130a1i 9 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  -u 1 #  0 )
321a1i 9 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  2  e.  ZZ )
33 id 19 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  n  e.  ZZ )
3432, 33zmulcld 9179 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  ZZ )
3529, 31, 34expp1zapd 10433 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  ( -u 1 ^ ( ( 2  x.  n )  +  1 ) )  =  ( ( -u
1 ^ ( 2  x.  n ) )  x.  -u 1 ) )
3610oveq1d 5789 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
( -u 1 ^ (
2  x.  n ) )  x.  -u 1
)  =  ( 1  x.  -u 1 ) )
3728mulid2i 7769 . . . . . . . . . . . 12  |-  ( 1  x.  -u 1 )  = 
-u 1
3836, 37syl6eq 2188 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  (
( -u 1 ^ (
2  x.  n ) )  x.  -u 1
)  =  -u 1
)
3935, 38eqtrd 2172 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  ( -u 1 ^ ( ( 2  x.  n )  +  1 ) )  =  -u 1 )
4027, 39sylan9eqr 2194 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N )  ->  ( -u 1 ^ N )  =  -u
1 )
4140rexlimiva 2544 . . . . . . . 8  |-  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  ->  ( -u 1 ^ N )  =  -u 1 )
4225, 41syl6bi 162 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  -> 
( -u 1 ^ N
)  =  -u 1
) )
4342impcom 124 . . . . . 6  |-  ( ( -.  2  ||  N  /\  N  e.  ZZ )  ->  ( -u 1 ^ N )  =  -u
1 )
4443eqeq1d 2148 . . . . 5  |-  ( ( -.  2  ||  N  /\  N  e.  ZZ )  ->  ( ( -u
1 ^ N )  =  1  <->  -u 1  =  1 ) )
4524, 44mtbiri 664 . . . 4  |-  ( ( -.  2  ||  N  /\  N  e.  ZZ )  ->  -.  ( -u 1 ^ N )  =  1 )
46 simpl 108 . . . 4  |-  ( ( -.  2  ||  N  /\  N  e.  ZZ )  ->  -.  2  ||  N )
4745, 462falsed 691 . . 3  |-  ( ( -.  2  ||  N  /\  N  e.  ZZ )  ->  ( ( -u
1 ^ N )  =  1  <->  2  ||  N ) )
4847expcom 115 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  -> 
( ( -u 1 ^ N )  =  1  <->  2  ||  N ) ) )
49 zeo3 11565 . 2  |-  ( N  e.  ZZ  ->  (
2  ||  N  \/  -.  2  ||  N ) )
5018, 48, 49mpjaod 707 1  |-  ( N  e.  ZZ  ->  (
( -u 1 ^ N
)  =  1  <->  2 
||  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2417   class class class wbr 3929  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625   -ucneg 7934   # cap 8343   2c2 8771   ZZcz 9054   ^cexp 10292    || cdvds 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-xor 1354  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219  df-exp 10293  df-dvds 11494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator