ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1expcl2 Unicode version

Theorem m1expcl2 9407
Description: Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
m1expcl2  |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )

Proof of Theorem m1expcl2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neg1cn 8065 . . 3  |-  -u 1  e.  CC
2 prid1g 3499 . . 3  |-  ( -u
1  e.  CC  ->  -u
1  e.  { -u
1 ,  1 } )
31, 2ax-mp 7 . 2  |-  -u 1  e.  { -u 1 ,  1 }
4 neg1ap0 8069 . 2  |-  -u 1 #  0
5 ax-1cn 7005 . . . 4  |-  1  e.  CC
6 prssi 3547 . . . 4  |-  ( (
-u 1  e.  CC  /\  1  e.  CC )  ->  { -u 1 ,  1 }  C_  CC )
71, 5, 6mp2an 410 . . 3  |-  { -u
1 ,  1 } 
C_  CC
8 elpri 3423 . . . . 5  |-  ( x  e.  { -u 1 ,  1 }  ->  ( x  =  -u 1  \/  x  =  1
) )
97sseli 2966 . . . . . . . . 9  |-  ( y  e.  { -u 1 ,  1 }  ->  y  e.  CC )
109mulm1d 7449 . . . . . . . 8  |-  ( y  e.  { -u 1 ,  1 }  ->  (
-u 1  x.  y
)  =  -u y
)
11 elpri 3423 . . . . . . . . 9  |-  ( y  e.  { -u 1 ,  1 }  ->  ( y  =  -u 1  \/  y  =  1
) )
12 negeq 7237 . . . . . . . . . . 11  |-  ( y  =  -u 1  ->  -u y  =  -u -u 1 )
13 negneg1e1 8070 . . . . . . . . . . . 12  |-  -u -u 1  =  1
14 1ex 7050 . . . . . . . . . . . . 13  |-  1  e.  _V
1514prid2 3502 . . . . . . . . . . . 12  |-  1  e.  { -u 1 ,  1 }
1613, 15eqeltri 2124 . . . . . . . . . . 11  |-  -u -u 1  e.  { -u 1 ,  1 }
1712, 16syl6eqel 2142 . . . . . . . . . 10  |-  ( y  =  -u 1  ->  -u y  e.  { -u 1 ,  1 } )
18 negeq 7237 . . . . . . . . . . 11  |-  ( y  =  1  ->  -u y  =  -u 1 )
1918, 3syl6eqel 2142 . . . . . . . . . 10  |-  ( y  =  1  ->  -u y  e.  { -u 1 ,  1 } )
2017, 19jaoi 644 . . . . . . . . 9  |-  ( ( y  =  -u 1  \/  y  =  1
)  ->  -u y  e. 
{ -u 1 ,  1 } )
2111, 20syl 14 . . . . . . . 8  |-  ( y  e.  { -u 1 ,  1 }  ->  -u y  e.  { -u 1 ,  1 } )
2210, 21eqeltrd 2128 . . . . . . 7  |-  ( y  e.  { -u 1 ,  1 }  ->  (
-u 1  x.  y
)  e.  { -u
1 ,  1 } )
23 oveq1 5544 . . . . . . . 8  |-  ( x  =  -u 1  ->  (
x  x.  y )  =  ( -u 1  x.  y ) )
2423eleq1d 2120 . . . . . . 7  |-  ( x  =  -u 1  ->  (
( x  x.  y
)  e.  { -u
1 ,  1 }  <-> 
( -u 1  x.  y
)  e.  { -u
1 ,  1 } ) )
2522, 24syl5ibr 149 . . . . . 6  |-  ( x  =  -u 1  ->  (
y  e.  { -u
1 ,  1 }  ->  ( x  x.  y )  e.  { -u 1 ,  1 } ) )
269mulid2d 7073 . . . . . . . 8  |-  ( y  e.  { -u 1 ,  1 }  ->  ( 1  x.  y )  =  y )
27 id 19 . . . . . . . 8  |-  ( y  e.  { -u 1 ,  1 }  ->  y  e.  { -u 1 ,  1 } )
2826, 27eqeltrd 2128 . . . . . . 7  |-  ( y  e.  { -u 1 ,  1 }  ->  ( 1  x.  y )  e.  { -u 1 ,  1 } )
29 oveq1 5544 . . . . . . . 8  |-  ( x  =  1  ->  (
x  x.  y )  =  ( 1  x.  y ) )
3029eleq1d 2120 . . . . . . 7  |-  ( x  =  1  ->  (
( x  x.  y
)  e.  { -u
1 ,  1 }  <-> 
( 1  x.  y
)  e.  { -u
1 ,  1 } ) )
3128, 30syl5ibr 149 . . . . . 6  |-  ( x  =  1  ->  (
y  e.  { -u
1 ,  1 }  ->  ( x  x.  y )  e.  { -u 1 ,  1 } ) )
3225, 31jaoi 644 . . . . 5  |-  ( ( x  =  -u 1  \/  x  =  1
)  ->  ( y  e.  { -u 1 ,  1 }  ->  (
x  x.  y )  e.  { -u 1 ,  1 } ) )
338, 32syl 14 . . . 4  |-  ( x  e.  { -u 1 ,  1 }  ->  ( y  e.  { -u
1 ,  1 }  ->  ( x  x.  y )  e.  { -u 1 ,  1 } ) )
3433imp 119 . . 3  |-  ( ( x  e.  { -u
1 ,  1 }  /\  y  e.  { -u 1 ,  1 } )  ->  ( x  x.  y )  e.  { -u 1 ,  1 } )
35 oveq2 5545 . . . . . . 7  |-  ( x  =  -u 1  ->  (
1  /  x )  =  ( 1  /  -u 1 ) )
36 1ap0 7625 . . . . . . . . . 10  |-  1 #  0
37 divneg2ap 7757 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  1  e.  CC  /\  1 #  0 )  ->  -u (
1  /  1 )  =  ( 1  /  -u 1 ) )
385, 5, 36, 37mp3an 1241 . . . . . . . . 9  |-  -u (
1  /  1 )  =  ( 1  /  -u 1 )
39 1div1e1 7725 . . . . . . . . . 10  |-  ( 1  /  1 )  =  1
4039negeqi 7238 . . . . . . . . 9  |-  -u (
1  /  1 )  =  -u 1
4138, 40eqtr3i 2076 . . . . . . . 8  |-  ( 1  /  -u 1 )  = 
-u 1
4241, 3eqeltri 2124 . . . . . . 7  |-  ( 1  /  -u 1 )  e. 
{ -u 1 ,  1 }
4335, 42syl6eqel 2142 . . . . . 6  |-  ( x  =  -u 1  ->  (
1  /  x )  e.  { -u 1 ,  1 } )
44 oveq2 5545 . . . . . . 7  |-  ( x  =  1  ->  (
1  /  x )  =  ( 1  / 
1 ) )
4539, 15eqeltri 2124 . . . . . . 7  |-  ( 1  /  1 )  e. 
{ -u 1 ,  1 }
4644, 45syl6eqel 2142 . . . . . 6  |-  ( x  =  1  ->  (
1  /  x )  e.  { -u 1 ,  1 } )
4743, 46jaoi 644 . . . . 5  |-  ( ( x  =  -u 1  \/  x  =  1
)  ->  ( 1  /  x )  e. 
{ -u 1 ,  1 } )
488, 47syl 14 . . . 4  |-  ( x  e.  { -u 1 ,  1 }  ->  ( 1  /  x )  e.  { -u 1 ,  1 } )
4948adantr 265 . . 3  |-  ( ( x  e.  { -u
1 ,  1 }  /\  x #  0 )  ->  ( 1  /  x )  e.  { -u 1 ,  1 } )
507, 34, 15, 49expcl2lemap 9397 . 2  |-  ( (
-u 1  e.  { -u 1 ,  1 }  /\  -u 1 #  0  /\  N  e.  ZZ )  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
513, 4, 50mp3an12 1231 1  |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 637    = wceq 1257    e. wcel 1407    C_ wss 2942   {cpr 3401   class class class wbr 3789  (class class class)co 5537   CCcc 6915   0cc0 6917   1c1 6918    x. cmul 6922   -ucneg 7216   # cap 7616    / cdiv 7695   ZZcz 8272   ^cexp 9384
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-coll 3897  ax-sep 3900  ax-nul 3908  ax-pow 3952  ax-pr 3969  ax-un 4195  ax-setind 4287  ax-iinf 4336  ax-cnex 7003  ax-resscn 7004  ax-1cn 7005  ax-1re 7006  ax-icn 7007  ax-addcl 7008  ax-addrcl 7009  ax-mulcl 7010  ax-mulrcl 7011  ax-addcom 7012  ax-mulcom 7013  ax-addass 7014  ax-mulass 7015  ax-distr 7016  ax-i2m1 7017  ax-1rid 7019  ax-0id 7020  ax-rnegex 7021  ax-precex 7022  ax-cnre 7023  ax-pre-ltirr 7024  ax-pre-ltwlin 7025  ax-pre-lttrn 7026  ax-pre-apti 7027  ax-pre-ltadd 7028  ax-pre-mulgt0 7029  ax-pre-mulext 7030
This theorem depends on definitions:  df-bi 114  df-dc 752  df-3or 895  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-nel 2313  df-ral 2326  df-rex 2327  df-reu 2328  df-rmo 2329  df-rab 2330  df-v 2574  df-sbc 2785  df-csb 2878  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-nul 3250  df-if 3357  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-int 3641  df-iun 3684  df-br 3790  df-opab 3844  df-mpt 3845  df-tr 3880  df-eprel 4051  df-id 4055  df-po 4058  df-iso 4059  df-iord 4128  df-on 4130  df-suc 4133  df-iom 4339  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-rn 4381  df-res 4382  df-ima 4383  df-iota 4892  df-fun 4929  df-fn 4930  df-f 4931  df-f1 4932  df-fo 4933  df-f1o 4934  df-fv 4935  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 5985  df-frec 6006  df-1o 6029  df-2o 6030  df-oadd 6033  df-omul 6034  df-er 6134  df-ec 6136  df-qs 6140  df-ni 6430  df-pli 6431  df-mi 6432  df-lti 6433  df-plpq 6470  df-mpq 6471  df-enq 6473  df-nqqs 6474  df-plqqs 6475  df-mqqs 6476  df-1nqqs 6477  df-rq 6478  df-ltnqqs 6479  df-enq0 6550  df-nq0 6551  df-0nq0 6552  df-plq0 6553  df-mq0 6554  df-inp 6592  df-i1p 6593  df-iplp 6594  df-iltp 6596  df-enr 6839  df-nr 6840  df-ltr 6843  df-0r 6844  df-1r 6845  df-0 6924  df-1 6925  df-r 6927  df-lt 6930  df-pnf 7091  df-mnf 7092  df-xr 7093  df-ltxr 7094  df-le 7095  df-sub 7217  df-neg 7218  df-reap 7610  df-ap 7617  df-div 7696  df-inn 7961  df-n0 8210  df-z 8273  df-uz 8540  df-iseq 9341  df-iexp 9385
This theorem is referenced by:  m1expcl  9408  m1expeven  9432
  Copyright terms: Public domain W3C validator