ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1modge3gt1 Unicode version

Theorem m1modge3gt1 10144
Description: Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
m1modge3gt1  |-  ( M  e.  ( ZZ>= `  3
)  ->  1  <  (
-u 1  mod  M
) )

Proof of Theorem m1modge3gt1
StepHypRef Expression
1 1p1e2 8837 . . . 4  |-  ( 1  +  1 )  =  2
2 2p1e3 8853 . . . . . 6  |-  ( 2  +  1 )  =  3
3 eluzle 9338 . . . . . 6  |-  ( M  e.  ( ZZ>= `  3
)  ->  3  <_  M )
42, 3eqbrtrid 3963 . . . . 5  |-  ( M  e.  ( ZZ>= `  3
)  ->  ( 2  +  1 )  <_  M )
5 2z 9082 . . . . . 6  |-  2  e.  ZZ
6 eluzelz 9335 . . . . . 6  |-  ( M  e.  ( ZZ>= `  3
)  ->  M  e.  ZZ )
7 zltp1le 9108 . . . . . 6  |-  ( ( 2  e.  ZZ  /\  M  e.  ZZ )  ->  ( 2  <  M  <->  ( 2  +  1 )  <_  M ) )
85, 6, 7sylancr 410 . . . . 5  |-  ( M  e.  ( ZZ>= `  3
)  ->  ( 2  <  M  <->  ( 2  +  1 )  <_  M ) )
94, 8mpbird 166 . . . 4  |-  ( M  e.  ( ZZ>= `  3
)  ->  2  <  M )
101, 9eqbrtrid 3963 . . 3  |-  ( M  e.  ( ZZ>= `  3
)  ->  ( 1  +  1 )  < 
M )
11 1red 7781 . . . 4  |-  ( M  e.  ( ZZ>= `  3
)  ->  1  e.  RR )
12 eluzelre 9336 . . . 4  |-  ( M  e.  ( ZZ>= `  3
)  ->  M  e.  RR )
1311, 11, 12ltaddsub2d 8308 . . 3  |-  ( M  e.  ( ZZ>= `  3
)  ->  ( (
1  +  1 )  <  M  <->  1  <  ( M  -  1 ) ) )
1410, 13mpbid 146 . 2  |-  ( M  e.  ( ZZ>= `  3
)  ->  1  <  ( M  -  1 ) )
15 eluzge3nn 9367 . . 3  |-  ( M  e.  ( ZZ>= `  3
)  ->  M  e.  NN )
16 m1modnnsub1 10143 . . 3  |-  ( M  e.  NN  ->  ( -u 1  mod  M )  =  ( M  - 
1 ) )
1715, 16syl 14 . 2  |-  ( M  e.  ( ZZ>= `  3
)  ->  ( -u 1  mod  M )  =  ( M  -  1 ) )
1814, 17breqtrrd 3956 1  |-  ( M  e.  ( ZZ>= `  3
)  ->  1  <  (
-u 1  mod  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   1c1 7621    + caddc 7623    < clt 7800    <_ cle 7801    - cmin 7933   -ucneg 7934   NNcn 8720   2c2 8771   3c3 8772   ZZcz 9054   ZZ>=cuz 9326    mod cmo 10095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fl 10043  df-mod 10096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator