ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1modnnsub1 Unicode version

Theorem m1modnnsub1 9504
Description: Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
m1modnnsub1  |-  ( M  e.  NN  ->  ( -u 1  mod  M )  =  ( M  - 
1 ) )

Proof of Theorem m1modnnsub1
StepHypRef Expression
1 1z 8510 . . . 4  |-  1  e.  ZZ
2 zq 8844 . . . 4  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
31, 2mp1i 10 . . 3  |-  ( M  e.  NN  ->  1  e.  QQ )
4 nnq 8851 . . 3  |-  ( M  e.  NN  ->  M  e.  QQ )
5 nngt0 8183 . . 3  |-  ( M  e.  NN  ->  0  <  M )
6 qnegmod 9503 . . 3  |-  ( ( 1  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  ( -u 1  mod  M )  =  ( ( M  -  1 )  mod 
M ) )
73, 4, 5, 6syl3anc 1170 . 2  |-  ( M  e.  NN  ->  ( -u 1  mod  M )  =  ( ( M  -  1 )  mod 
M ) )
8 qsubcl 8856 . . . 4  |-  ( ( M  e.  QQ  /\  1  e.  QQ )  ->  ( M  -  1 )  e.  QQ )
94, 3, 8syl2anc 403 . . 3  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  QQ )
10 nnm1ge0 8566 . . 3  |-  ( M  e.  NN  ->  0  <_  ( M  -  1 ) )
11 nnre 8165 . . . 4  |-  ( M  e.  NN  ->  M  e.  RR )
1211ltm1d 8129 . . 3  |-  ( M  e.  NN  ->  ( M  -  1 )  <  M )
13 modqid 9483 . . 3  |-  ( ( ( ( M  - 
1 )  e.  QQ  /\  M  e.  QQ )  /\  ( 0  <_ 
( M  -  1 )  /\  ( M  -  1 )  < 
M ) )  -> 
( ( M  - 
1 )  mod  M
)  =  ( M  -  1 ) )
149, 4, 10, 12, 13syl22anc 1171 . 2  |-  ( M  e.  NN  ->  (
( M  -  1 )  mod  M )  =  ( M  - 
1 ) )
157, 14eqtrd 2115 1  |-  ( M  e.  NN  ->  ( -u 1  mod  M )  =  ( M  - 
1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285    e. wcel 1434   class class class wbr 3805  (class class class)co 5563   0cc0 7095   1c1 7096    < clt 7267    <_ cle 7268    - cmin 7398   -ucneg 7399   NNcn 8158   ZZcz 8484   QQcq 8837    mod cmo 9456
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-n0 8408  df-z 8485  df-q 8838  df-rp 8868  df-fl 9404  df-mod 9457
This theorem is referenced by:  m1modge3gt1  9505
  Copyright terms: Public domain W3C validator