Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  ILE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Intuitionistic Logic Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Higher-Order Logic Explorer
Bibliographic Reference DescriptionHigher-Order Logic Explorer Page(s)
[BellMachover] p. 36Lemma 10.3id1 19
[BellMachover] p. 97Definition 10.1df-eu 1833
[BellMachover] p. 460Notationdf-mo 1834
[BellMachover] p. 460Definitionmo3 1854
[Hamilton] p. 28Definition 2.1ax-1 5
[Hamilton] p. 31Example 2.7(a)id1 19
[Hamilton] p. 73Rule 1ax-mp 8
[Hamilton] p. 74Rule 2ax-gen 1339
[KalishMontague] p. 81Axiom B7' in footnote 1ax-i9 1417
[Kunen] p. 10Axiom 0a9e 1556
[Margaris] p. 40Rule Cexlimiv 1733
[Margaris] p. 49Axiom A1ax-1 5
[Margaris] p. 49Axiom A2ax-2 6
[Margaris] p. 49Axiom A3ax-3 7
[Margaris] p. 49Definitiondf-ex 1381  df-or 789  dfbi2 366
[Margaris] p. 51Theorem 1id1 19
[Margaris] p. 56Theorem 3syld 39
[Margaris] p. 60Theorem 8mth8 558
[Margaris] p. 89Theorem 19.219.2 1529
[Margaris] p. 89Theorem 19.319.3 1461
[Margaris] p. 89Theorem 19.5alcom 1358
[Margaris] p. 89Theorem 19.6alex 1502
[Margaris] p. 89Theorem 19.7alnex 1380
[Margaris] p. 89Theorem 19.819.8a 1479
[Margaris] p. 89Theorem 19.919.9 1531  19.9v 1721
[Margaris] p. 89Theorem 19.11excom 1534  excomim 1533
[Margaris] p. 89Theorem 19.1219.12 1535
[Margaris] p. 90Theorem 19.14exnal 1504
[Margaris] p. 90Theorem 19.15albi 1351
[Margaris] p. 90Theorem 19.1619.16 1462
[Margaris] p. 90Theorem 19.1719.17 1463
[Margaris] p. 90Theorem 19.18exbi 1488
[Margaris] p. 90Theorem 19.1919.19 1536
[Margaris] p. 90Theorem 19.20alim 1347  alimd 1350  alimdv 1727
[Margaris] p. 90Theorem 19.2119.21-2 1465  19.21 1464  19.21bi 1467  19.21t 1477  19.21v 1722  alrimd 1359  alrimdv 1725  alrimi 1352  alrimiv 1723  alrimivv 1724
[Margaris] p. 90Theorem 19.222alimdv 1729  2eximdv 1730  exim 1483  eximd 1493  eximdv 1728
[Margaris] p. 90Theorem 19.2319.23 1379  19.23bi 1480  19.23t 1378  19.23v 1731  19.23vv 1732  exlimd 1482  exlimdv 1650  exlimdvv 1736  exlimi 1481  exlimiv 1733  exlimivv 1735
[Margaris] p. 90Theorem 19.2419.24 1542
[Margaris] p. 90Theorem 19.2519.25 1515
[Margaris] p. 90Theorem 19.2619.26-2 1363  19.26-3an 1364  19.26 1361
[Margaris] p. 90Theorem 19.2719.27 1469  19.27v 1737
[Margaris] p. 90Theorem 19.2819.28 1470  19.28v 1738
[Margaris] p. 90Theorem 19.2919.29 1498  19.29r 1499  19.29r2 1500  19.29x 1501
[Margaris] p. 90Theorem 19.3019.30 1516
[Margaris] p. 90Theorem 19.3119.31 1472
[Margaris] p. 90Theorem 19.3219.32 1471
[Margaris] p. 90Theorem 19.3319.33 1365  19.33b 1520  19.33b2 1519
[Margaris] p. 90Theorem 19.3419.34 1545
[Margaris] p. 90Theorem 19.3519.35-1 1510  19.35 1511  19.35i 1513  19.35ri 1514
[Margaris] p. 90Theorem 19.3619.36 1537  19.36aiv 1740  19.36i 1538  19.36v 1739
[Margaris] p. 90Theorem 19.3719.37 1539  19.37aiv 1743  19.37v 1742
[Margaris] p. 90Theorem 19.3819.38 1540
[Margaris] p. 90Theorem 19.3919.39 1541
[Margaris] p. 90Theorem 19.4019.40-2 1523  19.40 1522
[Margaris] p. 90Theorem 19.4119.41 1546  19.41v 1744  19.41vv 1745  19.41vvv 1746  19.41vvvv 1747
[Margaris] p. 90Theorem 19.4219.42 1547  19.42v 1748  19.42vv 1750  19.42vvv 1751
[Margaris] p. 90Theorem 19.4319.43 1517
[Margaris] p. 90Theorem 19.4419.44 1543
[Margaris] p. 90Theorem 19.4519.45 1544
[Margaris] p. 110Exercise 2(b)eu1 1844
[Megill] p. 444Axiom C5ax-17 1402
[Megill] p. 445Lemma L12alequcom 1399  ax-10 1388
[Megill] p. 446Lemma L17equtrr 1568
[Megill] p. 446Lemma L18ax9 1559
[Megill] p. 446Lemma L19hbnae 1580
[Megill] p. 447Remark 9.1df-sb 1606  sbid 1618
[Megill] p. 448Remark 9.6ax15 1806
[Megill] p. 448Scheme C4'ax-5o 1425
[Megill] p. 448Scheme C5'ax-4 1392
[Megill] p. 448Scheme C6'ax-7 1338
[Megill] p. 448Scheme C7'ax-6o 1428
[Megill] p. 448Scheme C8'ax-8 1387
[Megill] p. 448Scheme C9'ax-i12 1391
[Megill] p. 448Scheme C10'ax-9o 1558  ax-i9 1417
[Megill] p. 448Scheme C11'ax-10o 1576
[Megill] p. 448Scheme C12'ax-13 1395
[Megill] p. 448Scheme C13'ax-14 1396
[Megill] p. 448Scheme C14'ax-15 1807
[Megill] p. 448Scheme C15'ax-11o 1654
[Megill] p. 448Scheme C16'ax-16 1644
[Megill] p. 448Theorem 9.4dral1 1586  dral2 1587  drex1 1588  drex2 1589  drsb1 1609  drsb2 1666
[Megill] p. 449Theorem 9.7sbcom2 1782  sbequ 1665  sbid2v 1790
[Megill] p. 450Example in Appendixhba1 1436
[Mendelson] p. 36Lemma 1.8id1 19
[Mendelson] p. 69Axiom 4stdpc4 1619
[Mendelson] p. 69Axiom 5ax-5o 1425  stdpc5 1466
[Mendelson] p. 81Rule Cexlimiv 1733
[Mendelson] p. 95Axiom 6stdpc6 1563
[Mendelson] p. 95Axiom 7stdpc7 1614
[Monk2] p. 105Axiom C4ax-5 1336
[Monk2] p. 105Axiom C7ax-8 1387
[Monk2] p. 105Axiom C8ax-11 1389  ax-11o 1654
[Monk2] p. 105Axiom (C8)ax11v 1703
[Monk2] p. 108Lemma 5ax-5o 1425
[Monk2] p. 109Lemma 12ax-7 1338
[Monk2] p. 109Lemma 15equvin 1712  equvini 1602
[Monk2] p. 113Axiom C5-1ax-17 1402
[Monk2] p. 113Axiom C5-2ax-6 1337
[Monk2] p. 113Axiom C5-3ax-7 1338
[Monk2] p. 114Lemma 21ax4 1423
[Monk2] p. 114Lemma 22ax5o 1424  hba1 1436
[Monk2] p. 114Lemma 23hbia1 1446
[Monk2] p. 114Lemma 24hba2 1445
[Quine] p. 17Definition 2.1''dfsb7 1787
[Quine] p. 40Theorem 6.1sb5 1706
[Quine] p. 40Theorem 6.2sb56 1704  sb6 1705
[Stoll] p. 176Theorem 3.4(27)iman 779
[TakeutiZaring] p. 26Definition 6.10eu2 1848
[TakeutiZaring] p. 53Proposition 7.532eu5 1908
[Tarski] p. 67Axiom B5ax-4 1392
[Tarski] p. 68Lemma 6equid 1562  equid1 1561  equidALT 1560
[Tarski] p. 69Lemma 7equcomi 1564
[Tarski] p. 70Lemma 14a4im 1592  a4ime 1593
[Tarski] p. 70Lemma 16ax-11 1389  ax-11o 1654  ax11i 1574
[Tarski] p. 70Lemmas 16 and 17sb6 1705
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1402
[Tarski] p. 77Axiom B8 (p. 75) of system S2ax-13 1395  ax-14 1396
[WhiteheadRussell] p. 96Axiom *1.3olc 609
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 622
[WhiteheadRussell] p. 96Axiom *1.2 (Taut)pm1.2 649
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 658
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 679
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 529
[WhiteheadRussell] p. 100Theorem *2.02ax-1 5
[WhiteheadRussell] p. 100Theorem *2.03con2 551
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 75
[WhiteheadRussell] p. 100Theorem *2.05imim2 48
[WhiteheadRussell] p. 100Theorem *2.06imim1 69
[WhiteheadRussell] p. 101Theorem *2.1pm2.1 799
[WhiteheadRussell] p. 101Theorem *2.06syl 14
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 632
[WhiteheadRussell] p. 101Theorem *2.08id 18  id1 19
[WhiteheadRussell] p. 101Theorem *2.11exmid 798
[WhiteheadRussell] p. 101Theorem *2.12notnot1 541
[WhiteheadRussell] p. 101Theorem *2.13pm2.13 800
[WhiteheadRussell] p. 102Theorem *2.14notnot2 718
[WhiteheadRussell] p. 102Theorem *2.15con1 721
[WhiteheadRussell] p. 103Theorem *2.16con3 550  con3th 893
[WhiteheadRussell] p. 103Theorem *2.17ax-3 7
[WhiteheadRussell] p. 103Theorem *2.18pm2.18 716
[WhiteheadRussell] p. 104Theorem *2.2orc 610
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 668
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 530
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 533
[WhiteheadRussell] p. 104Theorem *2.25pm2.25 792
[WhiteheadRussell] p. 104Theorem *2.26pm2.26 829
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 34
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 661
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 662
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 692
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 693
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 691
[WhiteheadRussell] p. 105Definition *2.33df-3or 904
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 671
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 669
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 670
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 46
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 633
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 634
[WhiteheadRussell] p. 107Theorem *2.5pm2.5 753
[WhiteheadRussell] p. 107Theorem *2.6pm2.6 741
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 635
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 636
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 637
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 560
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 561
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 617
[WhiteheadRussell] p. 107Theorem *2.54pm2.54 788
[WhiteheadRussell] p. 107Theorem *2.55orel1 620
[WhiteheadRussell] p. 107Theorem *2.56orel2 621
[WhiteheadRussell] p. 107Theorem *2.61pm2.61 742
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 643
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 688
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 689
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 564
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 611  pm2.67 638
[WhiteheadRussell] p. 107Theorem *2.521pm2.521 754
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 642
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 698
[WhiteheadRussell] p. 108Theorem *2.68pm2.68 793
[WhiteheadRussell] p. 108Theorem *2.69looinv 756
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 694
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 695
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 697
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 696
[WhiteheadRussell] p. 108Theorem *2.77ax-2 6
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 699
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 700
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 70
[WhiteheadRussell] p. 108Theorem *2.85pm2.85 822
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 93
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 647
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 125  pm3.2im 545
[WhiteheadRussell] p. 111Theorem *3.11pm3.11 815
[WhiteheadRussell] p. 111Theorem *3.12pm3.12 816
[WhiteheadRussell] p. 111Theorem *3.13pm3.13 817
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 646
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 250
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 251
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 605
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 327
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 247
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 248
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 101  simplim 731
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 102  simprim 730
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 325
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 326
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 784
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 315
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 313
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 314
[WhiteheadRussell] p. 113Theorem *3.44jao 648  pm3.44 612
[WhiteheadRussell] p. 113Theorem *3.47prth 324
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 516
[WhiteheadRussell] p. 113Theorem *3.45 (Fact)pm3.45 511
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 675
[WhiteheadRussell] p. 116Theorem *4.1con34b 757
[WhiteheadRussell] p. 117Theorem *4.2biid 159
[WhiteheadRussell] p. 117Theorem *4.11notbi 760
[WhiteheadRussell] p. 117Theorem *4.12con2bi 761
[WhiteheadRussell] p. 117Theorem *4.13notnot 758
[WhiteheadRussell] p. 117Theorem *4.14pm4.14 783
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 785
[WhiteheadRussell] p. 117Theorem *4.21bicom 127
[WhiteheadRussell] p. 117Theorem *4.22biantr 866  bitr 440
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 373
[WhiteheadRussell] p. 117Theorem *4.25oridm 650  pm4.25 651
[WhiteheadRussell] p. 118Theorem *4.3ancom 252
[WhiteheadRussell] p. 118Theorem *4.4andi 707
[WhiteheadRussell] p. 118Theorem *4.31orcom 623
[WhiteheadRussell] p. 118Theorem *4.32anass 381
[WhiteheadRussell] p. 118Theorem *4.33orass 660
[WhiteheadRussell] p. 118Theorem *4.36anbi1 438
[WhiteheadRussell] p. 118Theorem *4.37orbi1 682
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 520
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 711
[WhiteheadRussell] p. 118Definition *4.34df-3an 905
[WhiteheadRussell] p. 119Theorem *4.41ordi 705
[WhiteheadRussell] p. 119Theorem *4.42pm4.42 895
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 862
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 672
[WhiteheadRussell] p. 119Theorem *4.45orabs 702  pm4.45 674  pm4.45im 316
[WhiteheadRussell] p. 119Theorem *10.2219.26 1361
[WhiteheadRussell] p. 120Theorem *4.5anor 804
[WhiteheadRussell] p. 120Theorem *4.6imor 796
[WhiteheadRussell] p. 120Theorem *4.7anclb 301
[WhiteheadRussell] p. 120Theorem *4.51ianor 803
[WhiteheadRussell] p. 120Theorem *4.52pm4.52 807
[WhiteheadRussell] p. 120Theorem *4.53pm4.53 808
[WhiteheadRussell] p. 120Theorem *4.54pm4.54 809
[WhiteheadRussell] p. 120Theorem *4.55pm4.55 811
[WhiteheadRussell] p. 120Theorem *4.56ioran 645  pm4.56 812
[WhiteheadRussell] p. 120Theorem *4.57oran 813  pm4.57 814
[WhiteheadRussell] p. 120Theorem *4.61pm4.61 781
[WhiteheadRussell] p. 120Theorem *4.62pm4.62 801
[WhiteheadRussell] p. 120Theorem *4.63pm4.63 776
[WhiteheadRussell] p. 120Theorem *4.64pm4.64 795
[WhiteheadRussell] p. 120Theorem *4.65pm4.65 782
[WhiteheadRussell] p. 120Theorem *4.66pm4.66 802
[WhiteheadRussell] p. 120Theorem *4.67pm4.67 777
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 368  pm4.71i 370  pm4.71r 369  pm4.71rd 372  pm4.71ri 371
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 712
[WhiteheadRussell] p. 121Theorem *4.73iba 283
[WhiteheadRussell] p. 121Theorem *4.74biorf 639
[WhiteheadRussell] p. 121Theorem *4.76jcab 517  pm4.76 519
[WhiteheadRussell] p. 121Theorem *4.77jaob 608  pm4.77 687
[WhiteheadRussell] p. 121Theorem *4.78pm4.78 818
[WhiteheadRussell] p. 121Theorem *4.79pm4.79 819
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 602
[WhiteheadRussell] p. 122Theorem *4.81pm4.81 774
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 863
[WhiteheadRussell] p. 122Theorem *4.83pm4.83 864
[WhiteheadRussell] p. 122Theorem *4.84imbi1 224
[WhiteheadRussell] p. 122Theorem *4.85imbi2 225
[WhiteheadRussell] p. 122Theorem *4.86bibi1 228
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 236  impexp 249  pm4.87 476
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 515
[WhiteheadRussell] p. 123Theorem *5.11pm5.11 830
[WhiteheadRussell] p. 123Theorem *5.12pm5.12 831
[WhiteheadRussell] p. 123Theorem *5.13pm5.13 833
[WhiteheadRussell] p. 123Theorem *5.14pm5.14 832
[WhiteheadRussell] p. 124Theorem *5.15pm5.15 834
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 713
[WhiteheadRussell] p. 124Theorem *5.17pm5.17 820
[WhiteheadRussell] p. 124Theorem *5.18nbbn 772  pm5.18 770
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 601
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 590
[WhiteheadRussell] p. 124Theorem *5.22xor 823
[WhiteheadRussell] p. 124Theorem *5.23dfbi3 825
[WhiteheadRussell] p. 124Theorem *5.24pm5.24 826
[WhiteheadRussell] p. 124Theorem *5.25dfor2 794
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 442
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 237
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 230
[WhiteheadRussell] p. 125Theorem *5.6pm5.6 842
[WhiteheadRussell] p. 125Theorem *5.7pm5.7 869
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 328
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 427
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 524
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 837
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 525
[WhiteheadRussell] p. 125Theorem *5.41imdi 238  pm5.41 239
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 302
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 841
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 690
[WhiteheadRussell] p. 125Theorem *5.54pm5.54 838
[WhiteheadRussell] p. 125Theorem *5.55pm5.55 835
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 684
[WhiteheadRussell] p. 125Theorem *5.62pm5.62 858
[WhiteheadRussell] p. 125Theorem *5.63pm5.63 859
[WhiteheadRussell] p. 125Theorem *5.71pm5.71 871
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 232
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 167
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 872
[WhiteheadRussell] p. 159Theorem *11.07pm11.07 1783
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1366
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1523
[WhiteheadRussell] p. 164Theorem *11.52nalexn 1503
[WhiteheadRussell] p. 164Theorem *11.512exnexn 1506
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1734
[WhiteheadRussell] p. 175Definition *14.02df-eu 1833
[WhiteheadRussell] p. 192Theorem *14.26eupick 1887  eupickbi 1890

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]