HomeHome Intuitionistic Logic Explorer
Theorem List (p. 102 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10101-10200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmodqcld 10101 Closure law for the modulo operation. (Contributed by Jim Kingdon, 16-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  0  <  B )   =>    |-  ( ph  ->  ( A  mod  B )  e. 
 QQ )
 
Theoremmodq0 10102  A  mod  B is zero iff  A is evenly divisible by  B. (Contributed by Jim Kingdon, 17-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( ( A  mod  B )  =  0  <->  ( A  /  B )  e.  ZZ ) )
 
Theoremmulqmod0 10103 The product of an integer and a positive rational number is 0 modulo the positive real number. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M ) 
 ->  ( ( A  x.  M )  mod  M )  =  0 )
 
Theoremnegqmod0 10104  A is divisible by  B iff its negative is. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( ( A  mod  B )  =  0  <->  ( -u A  mod  B )  =  0 ) )
 
Theoremmodqge0 10105 The modulo operation is nonnegative. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  0  <_  ( A 
 mod  B ) )
 
Theoremmodqlt 10106 The modulo operation is less than its second argument. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( A  mod  B )  <  B )
 
Theoremmodqelico 10107 Modular reduction produces a half-open interval. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( A  mod  B )  e.  ( 0 [,) B ) )
 
Theoremmodqdiffl 10108 The modulo operation differs from 
A by an integer multiple of  B. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( ( A  -  ( A  mod  B ) )  /  B )  =  ( |_ `  ( A  /  B ) ) )
 
Theoremmodqdifz 10109 The modulo operation differs from 
A by an integer multiple of  B. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( ( A  -  ( A  mod  B ) )  /  B )  e.  ZZ )
 
Theoremmodqfrac 10110 The fractional part of a number is the number modulo 1. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( A  mod  1
 )  =  ( A  -  ( |_ `  A ) ) )
 
Theoremflqmod 10111 The floor function expressed in terms of the modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( |_ `  A )  =  ( A  -  ( A  mod  1
 ) ) )
 
Theoremintqfrac 10112 Break a number into its integer part and its fractional part. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( A  e.  QQ  ->  A  =  ( ( |_ `  A )  +  ( A  mod  1 ) ) )
 
Theoremzmod10 10113 An integer modulo 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( N  e.  ZZ  ->  ( N  mod  1
 )  =  0 )
 
Theoremzmod1congr 10114 Two arbitrary integers are congruent modulo 1, see example 4 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  mod  1 )  =  ( B  mod  1 ) )
 
Theoremmodqmulnn 10115 Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( ( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) ) 
 <_  ( ( |_ `  ( N  x.  A ) ) 
 mod  ( N  x.  M ) ) )
 
Theoremmodqvalp1 10116 The value of the modulo operation (expressed with sum of denominator and nominator). (Contributed by Jim Kingdon, 20-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( ( A  +  B )  -  (
 ( ( |_ `  ( A  /  B ) )  +  1 )  x.  B ) )  =  ( A  mod  B ) )
 
Theoremzmodcl 10117 Closure law for the modulo operation restricted to integers. (Contributed by NM, 27-Nov-2008.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B )  e.  NN0 )
 
Theoremzmodcld 10118 Closure law for the modulo operation restricted to integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  NN )   =>    |-  ( ph  ->  ( A  mod  B )  e.  NN0 )
 
Theoremzmodfz 10119 An integer mod  B lies in the first  B nonnegative integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B )  e.  ( 0
 ... ( B  -  1 ) ) )
 
Theoremzmodfzo 10120 An integer mod  B lies in the first  B nonnegative integers. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B )  e.  ( 0..^ B ) )
 
Theoremzmodfzp1 10121 An integer mod  B lies in the first  B  +  1 nonnegative integers. (Contributed by AV, 27-Oct-2018.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B )  e.  ( 0
 ... B ) )
 
Theoremmodqid 10122 Identity law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
 0  <_  A  /\  A  <  B ) ) 
 ->  ( A  mod  B )  =  A )
 
Theoremmodqid0 10123 A positive real number modulo itself is 0. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( N  e.  QQ  /\  0  <  N )  ->  ( N  mod  N )  =  0 )
 
Theoremmodqid2 10124 Identity law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( ( A  mod  B )  =  A  <->  ( 0  <_  A  /\  A  <  B ) ) )
 
Theoremzmodid2 10125 Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M 
 mod  N )  =  M  <->  M  e.  ( 0 ... ( N  -  1
 ) ) ) )
 
Theoremzmodidfzo 10126 Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M 
 mod  N )  =  M  <->  M  e.  ( 0..^ N ) ) )
 
Theoremzmodidfzoimp 10127 Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018.)
 |-  ( M  e.  (
 0..^ N )  ->  ( M  mod  N )  =  M )
 
Theoremq0mod 10128 Special case: 0 modulo a positive real number is 0. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( N  e.  QQ  /\  0  <  N )  ->  ( 0  mod 
 N )  =  0 )
 
Theoremq1mod 10129 Special case: 1 modulo a real number greater than 1 is 1. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( N  e.  QQ  /\  1  <  N )  ->  ( 1  mod 
 N )  =  1 )
 
Theoremmodqabs 10130 Absorption law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  0  <  B )   &    |-  ( ph  ->  C  e.  QQ )   &    |-  ( ph  ->  B 
 <_  C )   =>    |-  ( ph  ->  (
 ( A  mod  B )  mod  C )  =  ( A  mod  B ) )
 
Theoremmodqabs2 10131 Absorption law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( ( A  mod  B )  mod  B )  =  ( A  mod  B ) )
 
Theoremmodqcyc 10132 The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  <  B ) )  ->  ( ( A  +  ( N  x.  B ) )  mod  B )  =  ( A  mod  B ) )
 
Theoremmodqcyc2 10133 The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  <  B ) )  ->  ( ( A  -  ( B  x.  N ) )  mod  B )  =  ( A  mod  B ) )
 
Theoremmodqadd1 10134 Addition property of the modulo operation. (Contributed by Jim Kingdon, 22-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  C  e.  QQ )   &    |-  ( ph  ->  D  e.  QQ )   &    |-  ( ph  ->  0  <  D )   &    |-  ( ph  ->  ( A  mod  D )  =  ( B 
 mod  D ) )   =>    |-  ( ph  ->  ( ( A  +  C )  mod  D )  =  ( ( B  +  C )  mod  D ) )
 
Theoremmodqaddabs 10135 Absorption law for modulo. (Contributed by Jim Kingdon, 22-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( ( ( A 
 mod  C )  +  ( B  mod  C ) ) 
 mod  C )  =  ( ( A  +  B )  mod  C ) )
 
Theoremmodqaddmod 10136 The sum of a number modulo a modulus and another number equals the sum of the two numbers modulo the same modulus. (Contributed by Jim Kingdon, 23-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( ( A 
 mod  M )  +  B )  mod  M )  =  ( ( A  +  B )  mod  M ) )
 
Theoremmulqaddmodid 10137 The sum of a positive rational number less than an upper bound and the product of an integer and the upper bound is the positive rational number modulo the upper bound. (Contributed by Jim Kingdon, 23-Oct-2021.)
 |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M ) ) )  ->  ( ( ( N  x.  M )  +  A )  mod  M )  =  A )
 
Theoremmulp1mod1 10138 The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>=
 `  2 ) ) 
 ->  ( ( ( N  x.  A )  +  1 )  mod  N )  =  1 )
 
Theoremmodqmuladd 10139* Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  B  e.  (
 0 [,) M ) )   &    |-  ( ph  ->  M  e.  QQ )   &    |-  ( ph  ->  0  <  M )   =>    |-  ( ph  ->  ( ( A  mod  M )  =  B  <->  E. k  e.  ZZ  A  =  ( (
 k  x.  M )  +  B ) ) )
 
Theoremmodqmuladdim 10140* Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
 |-  ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M ) 
 ->  ( ( A  mod  M )  =  B  ->  E. k  e.  ZZ  A  =  ( ( k  x.  M )  +  B ) ) )
 
Theoremmodqmuladdnn0 10141* Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
 |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  ( ( A  mod  M )  =  B  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) ) )
 
Theoremqnegmod 10142 The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N ) 
 ->  ( -u A  mod  N )  =  ( ( N  -  A )  mod  N ) )
 
Theoremm1modnnsub1 10143 Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.)
 |-  ( M  e.  NN  ->  ( -u 1  mod  M )  =  ( M  -  1 ) )
 
Theoremm1modge3gt1 10144 Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.)
 |-  ( M  e.  ( ZZ>=
 `  3 )  -> 
 1  <  ( -u 1  mod  M ) )
 
Theoremaddmodid 10145 The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.)
 |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  ( ( M  +  A )  mod  M )  =  A )
 
Theoremaddmodidr 10146 The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by AV, 19-Mar-2021.)
 |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  ( ( A  +  M )  mod  M )  =  A )
 
Theoremmodqadd2mod 10147 The sum of a number modulo a modulus and another number equals the sum of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  A )  mod  M ) )
 
Theoremmodqm1p1mod0 10148 If a number modulo a modulus equals the modulus decreased by 1, the first number increased by 1 modulo the modulus equals 0. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M ) 
 ->  ( ( A  mod  M )  =  ( M  -  1 )  ->  ( ( A  +  1 )  mod  M )  =  0 ) )
 
Theoremmodqltm1p1mod 10149 If a number modulo a modulus is less than the modulus decreased by 1, the first number increased by 1 modulo the modulus equals the first number modulo the modulus, increased by 1. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  ( A  mod  M )  < 
 ( M  -  1
 ) )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( A  +  1 )  mod  M )  =  ( ( A 
 mod  M )  +  1 ) )
 
Theoremmodqmul1 10150 Multiplication property of the modulo operation. Note that the multiplier  C must be an integer. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  D  e.  QQ )   &    |-  ( ph  ->  0  <  D )   &    |-  ( ph  ->  ( A  mod  D )  =  ( B 
 mod  D ) )   =>    |-  ( ph  ->  ( ( A  x.  C )  mod  D )  =  ( ( B  x.  C )  mod  D ) )
 
Theoremmodqmul12d 10151 Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  D  e.  ZZ )   &    |-  ( ph  ->  E  e.  QQ )   &    |-  ( ph  ->  0  <  E )   &    |-  ( ph  ->  ( A  mod  E )  =  ( B  mod  E ) )   &    |-  ( ph  ->  ( C  mod  E )  =  ( D  mod  E ) )   =>    |-  ( ph  ->  (
 ( A  x.  C )  mod  E )  =  ( ( B  x.  D )  mod  E ) )
 
Theoremmodqnegd 10152 Negation property of the modulo operation. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  C  e.  QQ )   &    |-  ( ph  ->  0  <  C )   &    |-  ( ph  ->  ( A  mod  C )  =  ( B  mod  C ) )   =>    |-  ( ph  ->  ( -u A  mod  C )  =  ( -u B  mod  C ) )
 
Theoremmodqadd12d 10153 Additive property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  C  e.  QQ )   &    |-  ( ph  ->  D  e.  QQ )   &    |-  ( ph  ->  E  e.  QQ )   &    |-  ( ph  ->  0  <  E )   &    |-  ( ph  ->  ( A  mod  E )  =  ( B  mod  E ) )   &    |-  ( ph  ->  ( C  mod  E )  =  ( D  mod  E ) )   =>    |-  ( ph  ->  (
 ( A  +  C )  mod  E )  =  ( ( B  +  D )  mod  E ) )
 
Theoremmodqsub12d 10154 Subtraction property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  C  e.  QQ )   &    |-  ( ph  ->  D  e.  QQ )   &    |-  ( ph  ->  E  e.  QQ )   &    |-  ( ph  ->  0  <  E )   &    |-  ( ph  ->  ( A  mod  E )  =  ( B  mod  E ) )   &    |-  ( ph  ->  ( C  mod  E )  =  ( D  mod  E ) )   =>    |-  ( ph  ->  (
 ( A  -  C )  mod  E )  =  ( ( B  -  D )  mod  E ) )
 
Theoremmodqsubmod 10155 The difference of a number modulo a modulus and another number equals the difference of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( ( A 
 mod  M )  -  B )  mod  M )  =  ( ( A  -  B )  mod  M ) )
 
Theoremmodqsubmodmod 10156 The difference of a number modulo a modulus and another number modulo the same modulus equals the difference of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( ( A 
 mod  M )  -  ( B  mod  M ) ) 
 mod  M )  =  ( ( A  -  B )  mod  M ) )
 
Theoremq2txmodxeq0 10157 Two times a positive number modulo the number is zero. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ( X  e.  QQ  /\  0  <  X )  ->  ( ( 2  x.  X )  mod  X )  =  0 )
 
Theoremq2submod 10158 If a number is between a modulus and twice the modulus, the first number modulo the modulus equals the first number minus the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B 
 <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  mod  B )  =  ( A  -  B ) )
 
Theoremmodifeq2int 10159 If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  ( 2  x.  B ) )  ->  ( A  mod  B )  =  if ( A  <  B ,  A ,  ( A  -  B ) ) )
 
Theoremmodaddmodup 10160 The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
 |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  ( ( B  +  ( A  mod  M ) )  -  M )  =  ( ( B  +  A )  mod  M ) ) )
 
Theoremmodaddmodlo 10161 The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
 |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  ( B  +  ( A  mod  M ) )  =  ( ( B  +  A )  mod  M ) ) )
 
Theoremmodqmulmod 10162 The product of a rational number modulo a modulus and an integer equals the product of the rational number and the integer modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  ZZ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( ( A 
 mod  M )  x.  B )  mod  M )  =  ( ( A  x.  B )  mod  M ) )
 
Theoremmodqmulmodr 10163 The product of an integer and a rational number modulo a modulus equals the product of the integer and the rational number modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( A  x.  ( B  mod  M ) )  mod  M )  =  ( ( A  x.  B )  mod  M ) )
 
Theoremmodqaddmulmod 10164 The sum of a rational number and the product of a second rational number modulo a modulus and an integer equals the sum of the rational number and the product of the other rational number and the integer modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  C  e.  ZZ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( A  +  ( ( B  mod  M )  x.  C ) )  mod  M )  =  ( ( A  +  ( B  x.  C ) )  mod  M ) )
 
Theoremmodqdi 10165 Distribute multiplication over a modulo operation. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( A  x.  ( B  mod  C ) )  =  ( ( A  x.  B )  mod  ( A  x.  C ) ) )
 
Theoremmodqsubdir 10166 Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( ( B  mod  C )  <_  ( A  mod  C )  <->  ( ( A  -  B )  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) ) )
 
Theoremmodqeqmodmin 10167 A rational number equals the difference of the rational number and a modulus modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M ) 
 ->  ( A  mod  M )  =  ( ( A  -  M )  mod  M ) )
 
Theoremmodfzo0difsn 10168* For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.)
 |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( (
 0..^ N )  \  { J } ) ) 
 ->  E. i  e.  (
 1..^ N ) K  =  ( ( i  +  J )  mod  N ) )
 
Theoremmodsumfzodifsn 10169 The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.)
 |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  mod  N )  e.  ( ( 0..^ N )  \  { J } ) )
 
Theoremmodlteq 10170 Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N ) ) 
 ->  ( ( I  mod  N )  =  ( J 
 mod  N )  <->  I  =  J ) )
 
Theoremaddmodlteq 10171 Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. (Contributed by AV, 20-Mar-2021.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S ) 
 mod  N )  <->  I  =  J ) )
 
4.6.3  Miscellaneous theorems about integers
 
Theoremfrec2uz0d 10172* The mapping  G is a one-to-one mapping from  om onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number  C (normally 0 for the upper integers  NN0 or 1 for the upper integers  NN), 1 maps to  C + 1, etc. This theorem shows the value of  G at ordinal natural number zero. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  ( G `  (/) )  =  C )
 
Theoremfrec2uzzd 10173* The value of  G (see frec2uz0d 10172) is an integer. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   =>    |-  ( ph  ->  ( G `  A )  e. 
 ZZ )
 
Theoremfrec2uzsucd 10174* The value of  G (see frec2uz0d 10172) at a successor. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   =>    |-  ( ph  ->  ( G `  suc  A )  =  ( ( G `
  A )  +  1 ) )
 
Theoremfrec2uzuzd 10175* The value  G (see frec2uz0d 10172) at an ordinal natural number is in the upper integers. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   =>    |-  ( ph  ->  ( G `  A )  e.  ( ZZ>= `  C )
 )
 
Theoremfrec2uzltd 10176* Less-than relation for  G (see frec2uz0d 10172). (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   &    |-  ( ph  ->  B  e.  om )   =>    |-  ( ph  ->  ( A  e.  B  ->  ( G `  A )  <  ( G `  B ) ) )
 
Theoremfrec2uzlt2d 10177* The mapping  G (see frec2uz0d 10172) preserves order. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   &    |-  ( ph  ->  B  e.  om )   =>    |-  ( ph  ->  ( A  e.  B  <->  ( G `  A )  <  ( G `
  B ) ) )
 
Theoremfrec2uzrand 10178* Range of  G (see frec2uz0d 10172). (Contributed by Jim Kingdon, 17-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  ran  G  =  ( ZZ>= `  C )
 )
 
Theoremfrec2uzf1od 10179*  G (see frec2uz0d 10172) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  G : om
 -1-1-onto-> ( ZZ>= `  C )
 )
 
Theoremfrec2uzisod 10180*  G (see frec2uz0d 10172) is an isomorphism from natural ordinals to upper integers. (Contributed by Jim Kingdon, 17-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  G  Isom  _E  ,  <  ( om ,  ( ZZ>= `  C ) ) )
 
Theoremfrecuzrdgrrn 10181* The function  R (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of 
S. (Contributed by Jim Kingdon, 28-Mar-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ( ph  /\  D  e.  om )  ->  ( R `  D )  e.  ( ( ZZ>= `  C )  X.  S ) )
 
Theoremfrec2uzrdg 10182* A helper lemma for the value of a recursive definition generator on upper integers (typically either  NN or  NN0) with characteristic function 
F ( x ,  y ) and initial value  A. This lemma shows that evaluating  R at an element of  om gives an ordered pair whose first element is the index (translated from  om to  ( ZZ>= `  C )). See comment in frec2uz0d 10172 which describes  G and the index translation. (Contributed by Jim Kingdon, 24-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  B  e.  om )   =>    |-  ( ph  ->  ( R `  B )  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B ) ) >. )
 
Theoremfrecuzrdgrcl 10183* The function  R (used in the definition of the recursive definition generator on upper integers) is a function defined for all natural numbers. (Contributed by Jim Kingdon, 1-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ph  ->  R : om --> ( ( ZZ>= `  C )  X.  S ) )
 
Theoremfrecuzrdglem 10184* A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 26-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  B  e.  ( ZZ>= `  C ) )   =>    |-  ( ph  ->  <. B ,  ( 2nd `  ( R `  ( `' G `  B ) ) )
 >.  e.  ran  R )
 
Theoremfrecuzrdgtcl 10185* The recursive definition generator on upper integers is a function. See comment in frec2uz0d 10172 for the description of  G as the mapping from  om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 26-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  T  =  ran  R )   =>    |-  ( ph  ->  T :
 ( ZZ>= `  C ) --> S )
 
Theoremfrecuzrdg0 10186* Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 10172 for the description of  G as the mapping from  om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 27-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  T  =  ran  R )   =>    |-  ( ph  ->  ( T `  C )  =  A )
 
Theoremfrecuzrdgsuc 10187* Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 10172 for the description of  G as the mapping from 
om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 28-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  T  =  ran  R )   =>    |-  ( ( ph  /\  B  e.  ( ZZ>= `  C )
 )  ->  ( T `  ( B  +  1 ) )  =  ( B F ( T `
  B ) ) )
 
Theoremfrecuzrdgrclt 10188* The function  R (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of  S. Similar to frecuzrdgrcl 10183 except that  S and  T need not be the same. (Contributed by Jim Kingdon, 22-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ph  ->  R : om --> ( ( ZZ>= `  C )  X.  S ) )
 
Theoremfrecuzrdgg 10189* Lemma for other theorems involving the the recursive definition generator on upper integers. Evaluating  R at a natural number gives an ordered pair whose first element is the mapping of that natural number via  G. (Contributed by Jim Kingdon, 23-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  N  e.  om )   &    |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  C )   =>    |-  ( ph  ->  ( 1st `  ( R `  N ) )  =  ( G `  N ) )
 
Theoremfrecuzrdgdomlem 10190* The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C ) )
 
Theoremfrecuzrdgdom 10191* The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C ) )
 
Theoremfrecuzrdgfunlem 10192* The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  Fun  ran  R )
 
Theoremfrecuzrdgfun 10193* The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ph  ->  Fun  ran  R )
 
Theoremfrecuzrdgtclt 10194* The recursive definition generator on upper integers is a function. (Contributed by Jim Kingdon, 22-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  P  =  ran  R )   =>    |-  ( ph  ->  P :
 ( ZZ>= `  C ) --> S )
 
Theoremfrecuzrdg0t 10195* Initial value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 28-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  P  =  ran  R )   =>    |-  ( ph  ->  ( P `  C )  =  A )
 
Theoremfrecuzrdgsuctlem 10196* Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 10172 for the description of  G as the mapping from  om to  ( ZZ>= `  C ). (Contributed by Jim Kingdon, 29-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  P  =  ran  R )   =>    |-  ( ( ph  /\  B  e.  ( ZZ>= `  C ) )  ->  ( P `  ( B  +  1 ) )  =  ( B F ( P `  B ) ) )
 
Theoremfrecuzrdgsuct 10197* Successor value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 29-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  P  =  ran  R )   =>    |-  ( ( ph  /\  B  e.  ( ZZ>= `  C )
 )  ->  ( P `  ( B  +  1 ) )  =  ( B F ( P `
  B ) ) )
 
Theoremuzenom 10198 An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  Z  ~~  om )
 
Theoremfrecfzennn 10199 The cardinality of a finite set of sequential integers. (See frec2uz0d 10172 for a description of the hypothesis.) (Contributed by Jim Kingdon, 18-May-2020.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( N  e.  NN0  ->  ( 1 ... N ) 
 ~~  ( `' G `  N ) )
 
Theoremfrecfzen2 10200 The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Jim Kingdon, 18-May-2020.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( M ... N ) 
 ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >