HomeHome Intuitionistic Logic Explorer
Theorem List (p. 35 of 132)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3401-3500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdifid 3401 The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.)
 |-  ( A  \  A )  =  (/)
 
TheoremdifidALT 3402 The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. Alternate proof of difid 3401. (Contributed by David Abernethy, 17-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  \  A )  =  (/)
 
Theoremdif0 3403 The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
 |-  ( A  \  (/) )  =  A
 
Theorem0dif 3404 The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
 |-  ( (/)  \  A )  =  (/)
 
Theoremdisjdif 3405 A class and its relative complement are disjoint. Theorem 38 of [Suppes] p. 29. (Contributed by NM, 24-Mar-1998.)
 |-  ( A  i^i  ( B  \  A ) )  =  (/)
 
Theoremdifin0 3406 The difference of a class from its intersection is empty. Theorem 37 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  i^i  B )  \  B )  =  (/)
 
Theoremundif1ss 3407 Absorption of difference by union. In classical logic, as Theorem 35 of [Suppes] p. 29, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( ( A  \  B )  u.  B )  C_  ( A  u.  B )
 
Theoremundif2ss 3408 Absorption of difference by union. In classical logic, as in Part of proof of Corollary 6K of [Enderton] p. 144, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( A  u.  ( B  \  A ) ) 
 C_  ( A  u.  B )
 
Theoremundifabs 3409 Absorption of difference by union. (Contributed by NM, 18-Aug-2013.)
 |-  ( A  u.  ( A  \  B ) )  =  A
 
Theoreminundifss 3410 The intersection and class difference of a class with another class are contained in the original class. In classical logic we'd be able to make a stronger statement: that everything in the original class is in the intersection or the difference (that is, this theorem would be equality rather than subset). (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( ( A  i^i  B )  u.  ( A 
 \  B ) ) 
 C_  A
 
Theoremdisjdif2 3411 The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.)
 |-  ( ( A  i^i  B )  =  (/)  ->  ( A  \  B )  =  A )
 
Theoremdifun2 3412 Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.)
 |-  ( ( A  u.  B )  \  B )  =  ( A  \  B )
 
Theoremundifss 3413 Union of complementary parts into whole. (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( A  C_  B  <->  ( A  u.  ( B 
 \  A ) ) 
 C_  B )
 
Theoremssdifin0 3414 A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
 |-  ( A  C_  ( B  \  C )  ->  ( A  i^i  C )  =  (/) )
 
Theoremssdifeq0 3415 A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.)
 |-  ( A  C_  ( B  \  A )  <->  A  =  (/) )
 
Theoremssundifim 3416 A consequence of inclusion in the union of two classes. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( A  C_  ( B  u.  C )  ->  ( A  \  B ) 
 C_  C )
 
Theoremdifdifdirss 3417 Distributive law for class difference. In classical logic, as in Exercise 4.8 of [Stoll] p. 16, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( ( A  \  B )  \  C ) 
 C_  ( ( A 
 \  C )  \  ( B  \  C ) )
 
Theoremuneqdifeqim 3418 Two ways that  A and  B can "partition"  C (when  A and  B don't overlap and  A is a part of  C). In classical logic, the second implication would be a biconditional. (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( ( A  C_  C  /\  ( A  i^i  B )  =  (/) )  ->  ( ( A  u.  B )  =  C  ->  ( C  \  A )  =  B )
 )
 
Theoremr19.2m 3419* Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1602). The restricted version is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) (Revised by Jim Kingdon, 7-Apr-2023.)
 |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  ph )  ->  E. x  e.  A  ph )
 
Theoremr19.2mOLD 3420* Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1602). The restricted version is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) Obsolete version of r19.2m 3419 as of 7-Apr-2023. (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  ph )  ->  E. x  e.  A  ph )
 
Theoremr19.3rm 3421* Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 19-Dec-2018.)
 |- 
 F/ x ph   =>    |-  ( E. y  y  e.  A  ->  ( ph 
 <-> 
 A. x  e.  A  ph ) )
 
Theoremr19.28m 3422* Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.)
 |- 
 F/ x ph   =>    |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  (
 ph  /\  A. x  e.  A  ps ) ) )
 
Theoremr19.3rmv 3423* Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 6-Aug-2018.)
 |-  ( E. y  y  e.  A  ->  ( ph 
 <-> 
 A. x  e.  A  ph ) )
 
Theoremr19.9rmv 3424* Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 5-Aug-2018.)
 |-  ( E. y  y  e.  A  ->  ( ph 
 <-> 
 E. x  e.  A  ph ) )
 
Theoremr19.28mv 3425* Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.)
 |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  (
 ph  /\  A. x  e.  A  ps ) ) )
 
Theoremr19.45mv 3426* Restricted version of Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
 |-  ( E. x  x  e.  A  ->  ( E. x  e.  A  ( ph  \/  ps )  <->  (
 ph  \/  E. x  e.  A  ps ) ) )
 
Theoremr19.44mv 3427* Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
 |-  ( E. y  y  e.  A  ->  ( E. x  e.  A  ( ph  \/  ps )  <->  ( E. x  e.  A  ph 
 \/  ps ) ) )
 
Theoremr19.27m 3428* Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.)
 |- 
 F/ x ps   =>    |-  ( E. x  x  e.  A  ->  (
 A. x  e.  A  ( ph  /\  ps )  <->  (
 A. x  e.  A  ph 
 /\  ps ) ) )
 
Theoremr19.27mv 3429* Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.)
 |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  (
 A. x  e.  A  ph 
 /\  ps ) ) )
 
Theoremrzal 3430* Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  =  (/)  ->  A. x  e.  A  ph )
 
Theoremrexn0 3431* Restricted existential quantification implies its restriction is nonempty (it is also inhabited as shown in rexm 3432). (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
 |-  ( E. x  e.  A  ph  ->  A  =/=  (/) )
 
Theoremrexm 3432* Restricted existential quantification implies its restriction is inhabited. (Contributed by Jim Kingdon, 16-Oct-2018.)
 |-  ( E. x  e.  A  ph  ->  E. x  x  e.  A )
 
Theoremralidm 3433* Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.)
 |-  ( A. x  e.  A  A. x  e.  A  ph  <->  A. x  e.  A  ph )
 
Theoremral0 3434 Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.)
 |- 
 A. x  e.  (/)  ph
 
Theoremrgenm 3435* Generalization rule that eliminates an inhabited class requirement. (Contributed by Jim Kingdon, 5-Aug-2018.)
 |-  ( ( E. x  x  e.  A  /\  x  e.  A )  -> 
 ph )   =>    |- 
 A. x  e.  A  ph
 
Theoremralf0 3436* The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.)
 |- 
 -.  ph   =>    |-  ( A. x  e.  A  ph  <->  A  =  (/) )
 
Theoremralm 3437 Inhabited classes and restricted quantification. (Contributed by Jim Kingdon, 6-Aug-2018.)
 |-  ( ( E. x  x  e.  A  ->  A. x  e.  A  ph ) 
 <-> 
 A. x  e.  A  ph )
 
Theoremraaanlem 3438* Special case of raaan 3439 where  A is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.)
 |- 
 F/ y ph   &    |-  F/ x ps   =>    |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps ) 
 <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) ) )
 
Theoremraaan 3439* Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.)
 |- 
 F/ y ph   &    |-  F/ x ps   =>    |-  ( A. x  e.  A  A. y  e.  A  (
 ph  /\  ps )  <->  (
 A. x  e.  A  ph 
 /\  A. y  e.  A  ps ) )
 
Theoremraaanv 3440* Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.)
 |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps ) 
 <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )
 
Theoremsbss 3441* Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
 |-  ( [ y  /  x ] x  C_  A  <->  y 
 C_  A )
 
Theoremsbcssg 3442 Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  C_  C  <->  [_ A  /  x ]_ B  C_  [_ A  /  x ]_ C ) )
 
Theoremdcun 3443 The union of two decidable classes is decidable. (Contributed by Jim Kingdon, 5-Oct-2022.)
 |-  ( ph  -> DECID  k  e.  A )   &    |-  ( ph  -> DECID  k  e.  B )   =>    |-  ( ph  -> DECID  k  e.  ( A  u.  B ) )
 
2.1.15  Conditional operator
 
Syntaxcif 3444 Extend class notation to include the conditional operator. See df-if 3445 for a description. (In older databases this was denoted "ded".)
 class  if ( ph ,  A ,  B )
 
Definitiondf-if 3445* Define the conditional operator. Read  if ( ph ,  A ,  B ) as "if  ph then  A else  B." See iftrue 3449 and iffalse 3452 for its values. In mathematical literature, this operator is rarely defined formally but is implicit in informal definitions such as "let f(x)=0 if x=0 and 1/x otherwise."

In the absence of excluded middle, this will tend to be useful where  ph is decidable (in the sense of df-dc 805). (Contributed by NM, 15-May-1999.)

 |- 
 if ( ph ,  A ,  B )  =  { x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
 
Theoremdfif6 3446* An alternate definition of the conditional operator df-if 3445 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
 |- 
 if ( ph ,  A ,  B )  =  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  -.  ph } )
 
Theoremifeq1 3447 Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( A  =  B  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  C )
 )
 
Theoremifeq2 3448 Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( A  =  B  ->  if ( ph ,  C ,  A )  =  if ( ph ,  C ,  B )
 )
 
Theoremiftrue 3449 Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ph  ->  if ( ph ,  A ,  B )  =  A )
 
Theoremiftruei 3450 Inference associated with iftrue 3449. (Contributed by BJ, 7-Oct-2018.)
 |-  ph   =>    |- 
 if ( ph ,  A ,  B )  =  A
 
Theoremiftrued 3451 Value of the conditional operator when its first argument is true. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  ch )   =>    |-  ( ph  ->  if ( ch ,  A ,  B )  =  A )
 
Theoremiffalse 3452 Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.)
 |-  ( -.  ph  ->  if ( ph ,  A ,  B )  =  B )
 
Theoremiffalsei 3453 Inference associated with iffalse 3452. (Contributed by BJ, 7-Oct-2018.)
 |- 
 -.  ph   =>    |- 
 if ( ph ,  A ,  B )  =  B
 
Theoremiffalsed 3454 Value of the conditional operator when its first argument is false. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  -.  ch )   =>    |-  ( ph  ->  if ( ch ,  A ,  B )  =  B )
 
Theoremifnefalse 3455 When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 3452 directly in this case. (Contributed by David A. Wheeler, 15-May-2015.)
 |-  ( A  =/=  B  ->  if ( A  =  B ,  C ,  D )  =  D )
 
Theoremifsbdc 3456 Distribute a function over an if-clause. (Contributed by Jim Kingdon, 1-Jan-2022.)
 |-  ( if ( ph ,  A ,  B )  =  A  ->  C  =  D )   &    |-  ( if ( ph ,  A ,  B )  =  B  ->  C  =  E )   =>    |-  (DECID 
 ph  ->  C  =  if ( ph ,  D ,  E ) )
 
Theoremdfif3 3457* Alternate definition of the conditional operator df-if 3445. Note that  ph is independent of  x i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  C  =  { x  |  ph }   =>    |- 
 if ( ph ,  A ,  B )  =  ( ( A  i^i  C )  u.  ( B  i^i  ( _V  \  C ) ) )
 
Theoremifeq12 3458 Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  D ) )
 
Theoremifeq1d 3459 Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C ) )
 
Theoremifeq2d 3460 Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B ) )
 
Theoremifeq12d 3461 Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  D ) )
 
Theoremifbi 3462 Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.)
 |-  ( ( ph  <->  ps )  ->  if ( ph ,  A ,  B )  =  if ( ps ,  A ,  B ) )
 
Theoremifbid 3463 Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  if ( ps ,  A ,  B )  =  if ( ch ,  A ,  B ) )
 
Theoremifbieq1d 3464 Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ch ,  B ,  C ) )
 
Theoremifbieq2i 3465 Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  <->  ps )   &    |-  A  =  B   =>    |-  if ( ph ,  C ,  A )  =  if ( ps ,  C ,  B )
 
Theoremifbieq2d 3466 Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  if ( ps ,  C ,  A )  =  if ( ch ,  C ,  B ) )
 
Theoremifbieq12i 3467 Equivalence deduction for conditional operators. (Contributed by NM, 18-Mar-2013.)
 |-  ( ph  <->  ps )   &    |-  A  =  C   &    |-  B  =  D   =>    |- 
 if ( ph ,  A ,  B )  =  if ( ps ,  C ,  D )
 
Theoremifbieq12d 3468 Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  A  =  C )   &    |-  ( ph  ->  B  =  D )   =>    |-  ( ph  ->  if ( ps ,  A ,  B )  =  if ( ch ,  C ,  D ) )
 
Theoremnfifd 3469 Deduction version of nfif 3470. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/_ x if ( ps ,  A ,  B ) )
 
Theoremnfif 3470 Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |- 
 F/ x ph   &    |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x if ( ph ,  A ,  B )
 
Theoremifcldadc 3471 Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.)
 |-  ( ( ph  /\  ps )  ->  A  e.  C )   &    |-  ( ( ph  /\  -.  ps )  ->  B  e.  C )   &    |-  ( ph  -> DECID  ps )   =>    |-  ( ph  ->  if ( ps ,  A ,  B )  e.  C )
 
Theoremifeq1dadc 3472 Conditional equality. (Contributed by Jim Kingdon, 1-Jan-2022.)
 |-  ( ( ph  /\  ps )  ->  A  =  B )   &    |-  ( ph  -> DECID  ps )   =>    |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C ) )
 
Theoremifbothdadc 3473 A formula  th containing a decidable conditional operator is true when both of its cases are true. (Contributed by Jim Kingdon, 3-Jun-2022.)
 |-  ( A  =  if ( ph ,  A ,  B )  ->  ( ps  <->  th ) )   &    |-  ( B  =  if ( ph ,  A ,  B )  ->  ( ch 
 <-> 
 th ) )   &    |-  (
 ( et  /\  ph )  ->  ps )   &    |-  ( ( et 
 /\  -.  ph )  ->  ch )   &    |-  ( et  -> DECID  ph )   =>    |-  ( et  ->  th )
 
Theoremifbothdc 3474 A wff  th containing a conditional operator is true when both of its cases are true. (Contributed by Jim Kingdon, 8-Aug-2021.)
 |-  ( A  =  if ( ph ,  A ,  B )  ->  ( ps  <->  th ) )   &    |-  ( B  =  if ( ph ,  A ,  B )  ->  ( ch 
 <-> 
 th ) )   =>    |-  ( ( ps 
 /\  ch  /\ DECID  ph )  ->  th )
 
Theoremifiddc 3475 Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.)
 |-  (DECID 
 ph  ->  if ( ph ,  A ,  A )  =  A )
 
Theoremeqifdc 3476 Expansion of an equality with a conditional operator. (Contributed by Jim Kingdon, 28-Jul-2022.)
 |-  (DECID 
 ph  ->  ( A  =  if ( ph ,  B ,  C )  <->  ( ( ph  /\  A  =  B )  \/  ( -.  ph  /\  A  =  C ) ) ) )
 
Theoremifcldcd 3477 Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.)
 |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  C )   &    |-  ( ph  -> DECID  ps )   =>    |-  ( ph  ->  if ( ps ,  A ,  B )  e.  C )
 
Theoremifandc 3478 Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  (DECID 
 ph  ->  if ( (
 ph  /\  ps ) ,  A ,  B )  =  if ( ph ,  if ( ps ,  A ,  B ) ,  B ) )
 
Theoremifmdc 3479 If a conditional class is inhabited, then the condition is decidable. This shows that conditionals are not very useful unless one can prove the condition decidable. (Contributed by BJ, 24-Sep-2022.)
 |-  ( A  e.  if ( ph ,  B ,  C )  -> DECID  ph )
 
2.1.16  Power classes
 
Syntaxcpw 3480 Extend class notation to include power class. (The tilde in the Metamath token is meant to suggest the calligraphic font of the P.)
 class  ~P A
 
Theorempwjust 3481* Soundness justification theorem for df-pw 3482. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |- 
 { x  |  x  C_  A }  =  {
 y  |  y  C_  A }
 
Definitiondf-pw 3482* Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of  _V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if  A is { 3 , 5 , 7 }, then 
~P A is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
 |- 
 ~P A  =  { x  |  x  C_  A }
 
Theorempweq 3483 Equality theorem for power class. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  =  B  ->  ~P A  =  ~P B )
 
Theorempweqi 3484 Equality inference for power class. (Contributed by NM, 27-Nov-2013.)
 |-  A  =  B   =>    |-  ~P A  =  ~P B
 
Theorempweqd 3485 Equality deduction for power class. (Contributed by NM, 27-Nov-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ~P A  =  ~P B )
 
Theoremelpw 3486 Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.)
 |-  A  e.  _V   =>    |-  ( A  e.  ~P B  <->  A  C_  B )
 
Theoremvelpw 3487* Setvar variable membership in a power class (common case). See elpw 3486. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( x  e.  ~P A 
 <->  x  C_  A )
 
Theoremelpwg 3488 Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.)
 |-  ( A  e.  V  ->  ( A  e.  ~P B 
 <->  A  C_  B )
 )
 
Theoremelpwi 3489 Subset relation implied by membership in a power class. (Contributed by NM, 17-Feb-2007.)
 |-  ( A  e.  ~P B  ->  A  C_  B )
 
Theoremelpwb 3490 Characterization of the elements of a power class. (Contributed by BJ, 29-Apr-2021.)
 |-  ( A  e.  ~P B 
 <->  ( A  e.  _V  /\  A  C_  B )
 )
 
Theoremelpwid 3491 An element of a power class is a subclass. Deduction form of elpwi 3489. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  e.  ~P B )   =>    |-  ( ph  ->  A 
 C_  B )
 
Theoremelelpwi 3492 If  A belongs to a part of  C then  A belongs to  C. (Contributed by FL, 3-Aug-2009.)
 |-  ( ( A  e.  B  /\  B  e.  ~P C )  ->  A  e.  C )
 
Theoremnfpw 3493 Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  F/_ x A   =>    |-  F/_ x ~P A
 
Theorempwidg 3494 Membership of the original in a power set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |-  ( A  e.  V  ->  A  e.  ~P A )
 
Theorempwid 3495 A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.)
 |-  A  e.  _V   =>    |-  A  e.  ~P A
 
Theorempwss 3496* Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.)
 |-  ( ~P A  C_  B 
 <-> 
 A. x ( x 
 C_  A  ->  x  e.  B ) )
 
2.1.17  Unordered and ordered pairs
 
Syntaxcsn 3497 Extend class notation to include singleton.
 class  { A }
 
Syntaxcpr 3498 Extend class notation to include unordered pair.
 class  { A ,  B }
 
Syntaxctp 3499 Extend class notation to include unordered triplet.
 class  { A ,  B ,  C }
 
Syntaxcop 3500 Extend class notation to include ordered pair.
 class  <. A ,  B >.
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13145
  Copyright terms: Public domain < Previous  Next >