HomeHome Intuitionistic Logic Explorer
Theorem List (p. 5 of 106)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 401-500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsylanblrc 401 Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019.)
 |-  ( ph  ->  ps )   &    |-  ch   &    |-  ( th 
 <->  ( ps  /\  ch ) )   =>    |-  ( ph  ->  th )
 
Theoremsylanbrc 402 Syllogism inference. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( th  <->  ( ps  /\  ch ) )   =>    |-  ( ph  ->  th )
 
Theoremsylancb 403 A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004.)
 |-  ( ph  <->  ps )   &    |-  ( ph  <->  ch )   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  ( ph  ->  th )
 
Theoremsylancbr 404 A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004.)
 |-  ( ps  <->  ph )   &    |-  ( ch  <->  ph )   &    |-  ( ( ps 
 /\  ch )  ->  th )   =>    |-  ( ph  ->  th )
 
Theoremsylancom 405 Syllogism inference with commutation of antecents. (Contributed by NM, 2-Jul-2008.)
 |-  ( ( ph  /\  ps )  ->  ch )   &    |-  ( ( ch 
 /\  ps )  ->  th )   =>    |-  (
 ( ph  /\  ps )  ->  th )
 
Theoremmpdan 406 An inference based on modus ponens. (Contributed by NM, 23-May-1999.) (Proof shortened by Wolf Lammen, 22-Nov-2012.)
 |-  ( ph  ->  ps )   &    |-  (
 ( ph  /\  ps )  ->  ch )   =>    |-  ( ph  ->  ch )
 
Theoremmpancom 407 An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 |-  ( ps  ->  ph )   &    |-  (
 ( ph  /\  ps )  ->  ch )   =>    |-  ( ps  ->  ch )
 
Theoremmpan 408 An inference based on modus ponens. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 |-  ph   &    |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ps  ->  ch )
 
Theoremmpan2 409 An inference based on modus ponens. (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
 |- 
 ps   &    |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ph  ->  ch )
 
Theoremmp2an 410 An inference based on modus ponens. (Contributed by NM, 13-Apr-1995.)
 |-  ph   &    |- 
 ps   &    |-  ( ( ph  /\  ps )  ->  ch )   =>    |- 
 ch
 
Theoremmp4an 411 An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2011.)
 |-  ph   &    |- 
 ps   &    |- 
 ch   &    |- 
 th   &    |-  ( ( ( ph  /\ 
 ps )  /\  ( ch  /\  th ) ) 
 ->  ta )   =>    |- 
 ta
 
Theoremmpan2d 412 A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.)
 |-  ( ph  ->  ch )   &    |-  ( ph  ->  ( ( ps 
 /\  ch )  ->  th )
 )   =>    |-  ( ph  ->  ( ps  ->  th ) )
 
Theoremmpand 413 A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ( ( ps 
 /\  ch )  ->  th )
 )   =>    |-  ( ph  ->  ( ch  ->  th ) )
 
Theoremmpani 414 An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
 |- 
 ps   &    |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ph  ->  ( ch  ->  th )
 )
 
Theoremmpan2i 415 An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
 |- 
 ch   &    |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ph  ->  ( ps  ->  th )
 )
 
Theoremmp2ani 416 An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.)
 |- 
 ps   &    |- 
 ch   &    |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ph  ->  th )
 
Theoremmp2and 417 A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  ( ( ps  /\  ch )  ->  th ) )   =>    |-  ( ph  ->  th )
 
Theoremmpanl1 418 An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 |-  ph   &    |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ps  /\  ch )  ->  th )
 
Theoremmpanl2 419 An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
 |- 
 ps   &    |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ch )  ->  th )
 
Theoremmpanl12 420 An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.)
 |-  ph   &    |- 
 ps   &    |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ch  ->  th )
 
Theoremmpanr1 421 An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
 |- 
 ps   &    |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ch )  ->  th )
 
Theoremmpanr2 422 An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 |- 
 ch   &    |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ps )  ->  th )
 
Theoremmpanr12 423 An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.)
 |- 
 ps   &    |- 
 ch   &    |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ph  ->  th )
 
Theoremmpanlr1 424 An inference based on modus ponens. (Contributed by NM, 30-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
 |- 
 ps   &    |-  ( ( ( ph  /\  ( ps  /\  ch ) )  /\  th )  ->  ta )   =>    |-  ( ( ( ph  /\ 
 ch )  /\  th )  ->  ta )
 
Theorempm5.74da 425 Distribution of implication over biconditional (deduction rule). (Contributed by NM, 4-May-2007.)
 |-  ( ( ph  /\  ps )  ->  ( ch  <->  th ) )   =>    |-  ( ph  ->  ( ( ps  ->  ch )  <->  ( ps  ->  th )
 ) )
 
Theoremimdistan 426 Distribution of implication with conjunction. (Contributed by NM, 31-May-1999.) (Proof shortened by Wolf Lammen, 6-Dec-2012.)
 |-  ( ( ph  ->  ( ps  ->  ch )
 ) 
 <->  ( ( ph  /\  ps )  ->  ( ph  /\  ch ) ) )
 
Theoremimdistani 427 Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ( ph  /\ 
 ps )  ->  ( ph  /\  ch ) )
 
Theoremimdistanri 428 Distribution of implication with conjunction. (Contributed by NM, 8-Jan-2002.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ( ps 
 /\  ph )  ->  ( ch  /\  ph ) )
 
Theoremimdistand 429 Distribution of implication with conjunction (deduction rule). (Contributed by NM, 27-Aug-2004.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )   =>    |-  ( ph  ->  ( ( ps  /\  ch )  ->  ( ps  /\  th ) ) )
 
Theoremimdistanda 430 Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.)
 |-  ( ( ph  /\  ps )  ->  ( ch  ->  th ) )   =>    |-  ( ph  ->  (
 ( ps  /\  ch )  ->  ( ps  /\  th ) ) )
 
Theorempm5.32d 431 Distribution of implication over biconditional (deduction rule). (Contributed by NM, 29-Oct-1996.) (Revised by NM, 31-Jan-2015.)
 |-  ( ph  ->  ( ps  ->  ( ch  <->  th ) ) )   =>    |-  ( ph  ->  ( ( ps  /\  ch )  <->  ( ps  /\  th ) ) )
 
Theorempm5.32rd 432 Distribution of implication over biconditional (deduction rule). (Contributed by NM, 25-Dec-2004.)
 |-  ( ph  ->  ( ps  ->  ( ch  <->  th ) ) )   =>    |-  ( ph  ->  ( ( ch  /\  ps )  <->  ( th  /\  ps ) ) )
 
Theorempm5.32da 433 Distribution of implication over biconditional (deduction rule). (Contributed by NM, 9-Dec-2006.)
 |-  ( ( ph  /\  ps )  ->  ( ch  <->  th ) )   =>    |-  ( ph  ->  ( ( ps  /\  ch ) 
 <->  ( ps  /\  th ) ) )
 
Theorempm5.32 434 Distribution of implication over biconditional. Theorem *5.32 of [WhiteheadRussell] p. 125. (Contributed by NM, 1-Aug-1994.) (Revised by NM, 31-Jan-2015.)
 |-  ( ( ph  ->  ( ps  <->  ch ) )  <->  ( ( ph  /\ 
 ps )  <->  ( ph  /\  ch ) ) )
 
Theorempm5.32i 435 Distribution of implication over biconditional (inference rule). (Contributed by NM, 1-Aug-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ( ph  /\ 
 ps )  <->  ( ph  /\  ch ) )
 
Theorempm5.32ri 436 Distribution of implication over biconditional (inference rule). (Contributed by NM, 12-Mar-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ( ps 
 /\  ph )  <->  ( ch  /\  ph ) )
 
Theorembiadan2 437 Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.)
 |-  ( ph  ->  ps )   &    |-  ( ps  ->  ( ph  <->  ch ) )   =>    |-  ( ph  <->  ( ps  /\  ch ) )
 
Theoremanbi2i 438 Introduce a left conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ch  /\  ph )  <->  ( ch  /\  ps ) )
 
Theoremanbi1i 439 Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ph  /\  ch ) 
 <->  ( ps  /\  ch ) )
 
Theoremanbi2ci 440 Variant of anbi2i 438 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ph  /\  ch ) 
 <->  ( ch  /\  ps ) )
 
Theoremanbi12i 441 Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   =>    |-  ( ( ph  /\  ch ) 
 <->  ( ps  /\  th ) )
 
Theoremanbi12ci 442 Variant of anbi12i 441 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   =>    |-  ( ( ph  /\  ch ) 
 <->  ( th  /\  ps ) )
 
Theoremsylan9bb 443 Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( th  ->  ( ch  <->  ta ) )   =>    |-  ( ( ph  /\ 
 th )  ->  ( ps 
 <->  ta ) )
 
Theoremsylan9bbr 444 Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( th  ->  ( ch  <->  ta ) )   =>    |-  ( ( th  /\  ph )  ->  ( ps  <->  ta ) )
 
Theoremanbi2d 445 Deduction adding a left conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( th  /\  ps ) 
 <->  ( th  /\  ch ) ) )
 
Theoremanbi1d 446 Deduction adding a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( ps  /\  th ) 
 <->  ( ch  /\  th ) ) )
 
Theoremanbi1 447 Introduce a right conjunct to both sides of a logical equivalence. Theorem *4.36 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  <->  ps )  ->  (
 ( ph  /\  ch )  <->  ( ps  /\  ch )
 ) )
 
Theoremanbi2 448 Introduce a left conjunct to both sides of a logical equivalence. (Contributed by NM, 16-Nov-2013.)
 |-  ( ( ph  <->  ps )  ->  (
 ( ch  /\  ph )  <->  ( ch  /\  ps )
 ) )
 
Theorembitr 449 Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ph  <->  ps )  /\  ( ps  <->  ch ) )  ->  ( ph  <->  ch ) )
 
Theoremanbi12d 450 Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( ps  /\  th ) 
 <->  ( ch  /\  ta ) ) )
 
Theoremmpan10 451 Modus ponens mixed with several conjunctions. (Contributed by Jim Kingdon, 7-Jan-2018.)
 |-  ( ( ( (
 ph  ->  ps )  /\  ch )  /\  ph )  ->  ( ps  /\  ch ) )
 
Theorempm5.3 452 Theorem *5.3 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.)
 |-  ( ( ( ph  /\ 
 ps )  ->  ch )  <->  ( ( ph  /\  ps )  ->  ( ph  /\  ch ) ) )
 
Theoremadantll 453 Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( ( th  /\  ph )  /\  ps )  ->  ch )
 
Theoremadantlr 454 Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( ( ph  /\ 
 th )  /\  ps )  ->  ch )
 
Theoremadantrl 455 Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( ph  /\  ( th  /\  ps ) ) 
 ->  ch )
 
Theoremadantrr 456 Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( ph  /\  ( ps  /\  th ) ) 
 ->  ch )
 
Theoremadantlll 457 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ( ( ta  /\  ph )  /\  ps )  /\  ch )  ->  th )
 
Theoremadantllr 458 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ( (
 ph  /\  ta )  /\  ps )  /\  ch )  ->  th )
 
Theoremadantlrl 459 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ( ph  /\  ( ta  /\  ps ) )  /\  ch )  ->  th )
 
Theoremadantlrr 460 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ( ph  /\  ( ps  /\  ta ) )  /\  ch )  ->  th )
 
Theoremadantrll 461 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  (
 ( ta  /\  ps )  /\  ch ) ) 
 ->  th )
 
Theoremadantrlr 462 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  (
 ( ps  /\  ta )  /\  ch ) ) 
 ->  th )
 
Theoremadantrrl 463 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ( ps  /\  ( ta  /\  ch ) ) )  ->  th )
 
Theoremadantrrr 464 Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ( ps  /\  ( ch  /\  ta ) ) )  ->  th )
 
Theoremad2antrr 465 Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.) (Proof shortened by Wolf Lammen, 20-Nov-2012.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ph  /\  ch )  /\  th )  ->  ps )
 
Theoremad2antlr 466 Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.) (Proof shortened by Wolf Lammen, 20-Nov-2012.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ch  /\  ph )  /\  th )  ->  ps )
 
Theoremad2antrl 467 Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ch  /\  ( ph  /\  th ) ) 
 ->  ps )
 
Theoremad2antll 468 Deduction adding conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ch  /\  ( th  /\  ph ) )  ->  ps )
 
Theoremad3antrrr 469 Deduction adding three conjuncts to antecedent. (Contributed by NM, 28-Jul-2012.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ph  /\ 
 ch )  /\  th )  /\  ta )  ->  ps )
 
Theoremad3antlr 470 Deduction adding three conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ch 
 /\  ph )  /\  th )  /\  ta )  ->  ps )
 
Theoremad4antr 471 Deduction adding 4 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( (
 ph  /\  ch )  /\  th )  /\  ta )  /\  et )  ->  ps )
 
Theoremad4antlr 472 Deduction adding 4 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ch  /\  ph )  /\  th )  /\  ta )  /\  et )  ->  ps )
 
Theoremad5antr 473 Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ph  /\  ch )  /\  th )  /\  ta )  /\  et )  /\  ze )  ->  ps )
 
Theoremad5antlr 474 Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ch  /\  ph )  /\  th )  /\  ta )  /\  et )  /\  ze )  ->  ps )
 
Theoremad6antr 475 Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ( ph  /\  ch )  /\  th )  /\  ta )  /\  et )  /\  ze )  /\  si )  ->  ps )
 
Theoremad6antlr 476 Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ( ch  /\  ph )  /\  th )  /\  ta )  /\  et )  /\  ze )  /\  si )  ->  ps )
 
Theoremad7antr 477 Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ( ( ph  /\ 
 ch )  /\  th )  /\  ta )  /\  et )  /\  ze )  /\  si )  /\  rh )  ->  ps )
 
Theoremad7antlr 478 Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ( ( ch 
 /\  ph )  /\  th )  /\  ta )  /\  et )  /\  ze )  /\  si )  /\  rh )  ->  ps )
 
Theoremad8antr 479 Deduction adding 8 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ( ( (
 ph  /\  ch )  /\  th )  /\  ta )  /\  et )  /\  ze )  /\  si )  /\  rh )  /\  mu )  ->  ps )
 
Theoremad8antlr 480 Deduction adding 8 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ( ( ( ch  /\  ph )  /\  th )  /\  ta )  /\  et )  /\  ze )  /\  si )  /\  rh )  /\  mu )  ->  ps )
 
Theoremad9antr 481 Deduction adding 9 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ( ( ( ( ph  /\  ch )  /\  th )  /\  ta )  /\  et )  /\  ze )  /\  si )  /\  rh )  /\  mu )  /\  la )  ->  ps )
 
Theoremad9antlr 482 Deduction adding 9 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ( ( ( ( ch  /\  ph )  /\  th )  /\  ta )  /\  et )  /\  ze )  /\  si )  /\  rh )  /\  mu )  /\  la )  ->  ps )
 
Theoremad10antr 483 Deduction adding 10 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ( ( ( ( ( ph  /\  ch )  /\  th )  /\  ta )  /\  et )  /\  ze )  /\  si )  /\  rh )  /\  mu )  /\  la )  /\  ka )  ->  ps )
 
Theoremad10antlr 484 Deduction adding 10 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ( ( ( ( ( ( ( ( ( ch  /\  ph )  /\  th )  /\  ta )  /\  et )  /\  ze )  /\  si )  /\  rh )  /\  mu )  /\  la )  /\  ka )  ->  ps )
 
Theoremad2ant2l 485 Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( ( th  /\  ph )  /\  ( ta 
 /\  ps ) )  ->  ch )
 
Theoremad2ant2r 486 Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( ( ph  /\ 
 th )  /\  ( ps  /\  ta ) ) 
 ->  ch )
 
Theoremad2ant2lr 487 Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( ( th  /\  ph )  /\  ( ps 
 /\  ta ) )  ->  ch )
 
Theoremad2ant2rl 488 Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( ( ph  /\ 
 th )  /\  ( ta  /\  ps ) ) 
 ->  ch )
 
Theoremsimpll 489 Simplification of a conjunction. (Contributed by NM, 18-Mar-2007.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  ph )
 
Theoremsimplr 490 Simplification of a conjunction. (Contributed by NM, 20-Mar-2007.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  ps )
 
Theoremsimprl 491 Simplification of a conjunction. (Contributed by NM, 21-Mar-2007.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  ps )
 
Theoremsimprr 492 Simplification of a conjunction. (Contributed by NM, 21-Mar-2007.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  ch )
 
Theoremsimplll 493 Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.)
 |-  ( ( ( (
 ph  /\  ps )  /\  ch )  /\  th )  ->  ph )
 
Theoremsimpllr 494 Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.)
 |-  ( ( ( (
 ph  /\  ps )  /\  ch )  /\  th )  ->  ps )
 
Theoremsimplrl 495 Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.)
 |-  ( ( ( ph  /\  ( ps  /\  ch ) )  /\  th )  ->  ps )
 
Theoremsimplrr 496 Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.)
 |-  ( ( ( ph  /\  ( ps  /\  ch ) )  /\  th )  ->  ch )
 
Theoremsimprll 497 Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.)
 |-  ( ( ph  /\  (
 ( ps  /\  ch )  /\  th ) ) 
 ->  ps )
 
Theoremsimprlr 498 Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.)
 |-  ( ( ph  /\  (
 ( ps  /\  ch )  /\  th ) ) 
 ->  ch )
 
Theoremsimprrl 499 Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.)
 |-  ( ( ph  /\  ( ps  /\  ( ch  /\  th ) ) )  ->  ch )
 
Theoremsimprrr 500 Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.)
 |-  ( ( ph  /\  ( ps  /\  ( ch  /\  th ) ) )  ->  th )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10511
  Copyright terms: Public domain < Previous  Next >