HomeHome Intuitionistic Logic Explorer
Theorem List (p. 54 of 106)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5301-5400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfndmdifcom 5301 The difference set between two functions is commutative. (Contributed by Stefan O'Rear, 17-Jan-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  dom  ( G  \  F ) )
 
Theoremfndmin 5302* Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
 
Theoremfneqeql 5303 Two functions are equal iff their equalizer is the whole domain. (Contributed by Stefan O'Rear, 7-Mar-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G 
 <-> 
 dom  ( F  i^i  G )  =  A ) )
 
Theoremfneqeql2 5304 Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G 
 <->  A  C_  dom  ( F  i^i  G ) ) )
 
Theoremfnreseql 5305 Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A  /\  X  C_  A )  ->  ( ( F  |`  X )  =  ( G  |`  X )  <->  X  C_  dom  ( F  i^i  G ) ) )
 
Theoremchfnrn 5306* The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.)
 |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  ->  ran  F  C_  U. A )
 
Theoremfunfvop 5307 Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 14-Oct-1996.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `  A ) >.  e.  F )
 
Theoremfunfvbrb 5308 Two ways to say that  A is in the domain of  F. (Contributed by Mario Carneiro, 1-May-2014.)
 |-  ( Fun  F  ->  ( A  e.  dom  F  <->  A F ( F `  A ) ) )
 
Theoremfvimacnvi 5309 A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.)
 |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  ->  ( F `  A )  e.  B )
 
Theoremfvimacnv 5310 The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 5005 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  ( ( F `
  A )  e.  B  <->  A  e.  ( `' F " B ) ) )
 
Theoremfunimass3 5311 A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 5310 would be the special case of  A being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( ( F " A )  C_  B  <->  A  C_  ( `' F " B ) ) )
 
Theoremfunimass5 5312* A subclass of a preimage in terms of function values. (Contributed by NM, 15-May-2007.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( A  C_  ( `' F " B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremfunconstss 5313* Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( A. x  e.  A  ( F `  x )  =  B  <->  A 
 C_  ( `' F " { B } )
 ) )
 
Theoremelpreima 5314 Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( F  Fn  A  ->  ( B  e.  ( `' F " C )  <-> 
 ( B  e.  A  /\  ( F `  B )  e.  C )
 ) )
 
Theoremfniniseg 5315 Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
 |-  ( F  Fn  A  ->  ( C  e.  ( `' F " { B } )  <->  ( C  e.  A  /\  ( F `  C )  =  B ) ) )
 
Theoremfncnvima2 5316* Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |-  ( F  Fn  A  ->  ( `' F " B )  =  { x  e.  A  |  ( F `  x )  e.  B } )
 
Theoremfniniseg2 5317* Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |-  ( F  Fn  A  ->  ( `' F " { B } )  =  { x  e.  A  |  ( F `  x )  =  B }
 )
 
Theoremfnniniseg2 5318* Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |-  ( F  Fn  A  ->  ( `' F "
 ( _V  \  { B } ) )  =  { x  e.  A  |  ( F `  x )  =/=  B } )
 
Theoremrexsupp 5319* Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.)
 |-  ( F  Fn  A  ->  ( E. x  e.  ( `' F "
 ( _V  \  { Z } ) ) ph  <->  E. x  e.  A  (
 ( F `  x )  =/=  Z  /\  ph )
 ) )
 
Theoremunpreima 5320 Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( Fun  F  ->  ( `' F " ( A  u.  B ) )  =  ( ( `' F " A )  u.  ( `' F " B ) ) )
 
Theoreminpreima 5321 Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jun-2016.)
 |-  ( Fun  F  ->  ( `' F " ( A  i^i  B ) )  =  ( ( `' F " A )  i^i  ( `' F " B ) ) )
 
Theoremdifpreima 5322 Preimage of a difference. (Contributed by Mario Carneiro, 14-Jun-2016.)
 |-  ( Fun  F  ->  ( `' F " ( A 
 \  B ) )  =  ( ( `' F " A ) 
 \  ( `' F " B ) ) )
 
Theoremrespreima 5323 The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( Fun  F  ->  ( `' ( F  |`  B )
 " A )  =  ( ( `' F " A )  i^i  B ) )
 
Theoremfimacnv 5324 The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.)
 |-  ( F : A --> B  ->  ( `' F " B )  =  A )
 
Theoremfnopfv 5325 Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 30-Sep-2004.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  <. B ,  ( F `  B ) >.  e.  F )
 
Theoremfvelrn 5326 A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  ( F `  A )  e.  ran  F )
 
Theoremfnfvelrn 5327 A function's value belongs to its range. (Contributed by NM, 15-Oct-1996.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F `  B )  e.  ran  F )
 
Theoremffvelrn 5328 A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.)
 |-  ( ( F : A
 --> B  /\  C  e.  A )  ->  ( F `
  C )  e.  B )
 
Theoremffvelrni 5329 A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.)
 |-  F : A --> B   =>    |-  ( C  e.  A  ->  ( F `  C )  e.  B )
 
Theoremffvelrnda 5330 A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |-  ( ph  ->  F : A --> B )   =>    |-  ( ( ph  /\  C  e.  A ) 
 ->  ( F `  C )  e.  B )
 
Theoremffvelrnd 5331 A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  C  e.  A )   =>    |-  ( ph  ->  ( F `  C )  e.  B )
 
Theoremrexrn 5332* Restricted existential quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
 |-  ( x  =  ( F `  y ) 
 ->  ( ph  <->  ps ) )   =>    |-  ( F  Fn  A  ->  ( E. x  e.  ran  F ph  <->  E. y  e.  A  ps ) )
 
Theoremralrn 5333* Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
 |-  ( x  =  ( F `  y ) 
 ->  ( ph  <->  ps ) )   =>    |-  ( F  Fn  A  ->  ( A. x  e.  ran  F ph  <->  A. y  e.  A  ps ) )
 
Theoremelrnrexdm 5334* For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
 |-  ( Fun  F  ->  ( Y  e.  ran  F  ->  E. x  e.  dom  F  Y  =  ( F `
  x ) ) )
 
Theoremelrnrexdmb 5335* For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
 |-  ( Fun  F  ->  ( Y  e.  ran  F  <->  E. x  e.  dom  F  Y  =  ( F `  x ) ) )
 
Theoremeldmrexrn 5336* For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
 |-  ( Fun  F  ->  ( Y  e.  dom  F  ->  E. x  e.  ran  F  x  =  ( F `
  Y ) ) )
 
Theoremralrnmpt 5337* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e. 
 ran  F ps  <->  A. x  e.  A  ch ) )
 
Theoremrexrnmpt 5338* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( A. x  e.  A  B  e.  V  ->  ( E. y  e. 
 ran  F ps  <->  E. x  e.  A  ch ) )
 
Theoremdff2 5339 Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.)
 |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  F  C_  ( A  X.  B ) ) )
 
Theoremdff3im 5340* Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.)
 |-  ( F : A --> B  ->  ( F  C_  ( A  X.  B ) 
 /\  A. x  e.  A  E! y  x F y ) )
 
Theoremdff4im 5341* Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.)
 |-  ( F : A --> B  ->  ( F  C_  ( A  X.  B ) 
 /\  A. x  e.  A  E! y  e.  B  x F y ) )
 
Theoremdffo3 5342* An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.)
 |-  ( F : A -onto-> B 
 <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
 
Theoremdffo4 5343* Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
 |-  ( F : A -onto-> B 
 <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y ) )
 
Theoremdffo5 5344* Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
 |-  ( F : A -onto-> B 
 <->  ( F : A --> B  /\  A. y  e.  B  E. x  x F y ) )
 
Theoremfoelrn 5345* Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.)
 |-  ( ( F : A -onto-> B  /\  C  e.  B )  ->  E. x  e.  A  C  =  ( F `  x ) )
 
Theoremfoco2 5346 If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.)
 |-  ( ( F : B
 --> C  /\  G : A
 --> B  /\  ( F  o.  G ) : A -onto-> C )  ->  F : B -onto-> C )
 
Theoremfmpt 5347* Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  C )   =>    |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
 
Theoremf1ompt 5348* Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.)
 |-  F  =  ( x  e.  A  |->  C )   =>    |-  ( F : A -1-1-onto-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. y  e.  B  E! x  e.  A  y  =  C )
 )
 
Theoremfmpti 5349* Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
 |-  F  =  ( x  e.  A  |->  C )   &    |-  ( x  e.  A  ->  C  e.  B )   =>    |-  F : A --> B
 
Theoremfmptd 5350* Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  e.  C )   &    |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ph  ->  F : A --> C )
 
Theoremffnfv 5351* A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.)
 |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremffnfvf 5352 A function maps to a class to which all values belong. This version of ffnfv 5351 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  F/_ x F   =>    |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremfnfvrnss 5353* An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.)
 |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  ran  F  C_  B )
 
Theoremrnmptss 5354* The range of an operation given by the "maps to" notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( A. x  e.  A  B  e.  C  ->  ran 
 F  C_  C )
 
Theoremfmpt2d 5355* Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  e.  V )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   &    |-  ( ( ph  /\  y  e.  A )  ->  ( F `  y )  e.  C )   =>    |-  ( ph  ->  F : A --> C )
 
Theoremffvresb 5356* A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.)
 |-  ( Fun  F  ->  ( ( F  |`  A ) : A --> B  <->  A. x  e.  A  ( x  e.  dom  F 
 /\  ( F `  x )  e.  B ) ) )
 
Theoremf1oresrab 5357* Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.)
 |-  F  =  ( x  e.  A  |->  C )   &    |-  ( ph  ->  F : A
 -1-1-onto-> B )   &    |-  ( ( ph  /\  x  e.  A  /\  y  =  C )  ->  ( ch  <->  ps ) )   =>    |-  ( ph  ->  ( F  |`  { x  e.  A  |  ps }
 ) : { x  e.  A  |  ps } -1-1-onto-> {
 y  e.  B  |  ch } )
 
Theoremfmptco 5358* Composition of two functions expressed as ordered-pair class abstractions. If  F has the equation ( x + 2 ) and  G the equation ( 3 * z ) then  ( G  o.  F
) has the equation ( 3 * ( x + 2 ) ) . (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.)
 |-  ( ( ph  /\  x  e.  A )  ->  R  e.  B )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )   &    |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )   &    |-  (
 y  =  R  ->  S  =  T )   =>    |-  ( ph  ->  ( G  o.  F )  =  ( x  e.  A  |->  T ) )
 
Theoremfmptcof 5359* Version of fmptco 5358 where  ph needn't be distinct from  x. (Contributed by NM, 27-Dec-2014.)
 |-  ( ph  ->  A. x  e.  A  R  e.  B )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )   &    |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )   &    |-  ( y  =  R  ->  S  =  T )   =>    |-  ( ph  ->  ( G  o.  F )  =  ( x  e.  A  |->  T ) )
 
Theoremfmptcos 5360* Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( ph  ->  A. x  e.  A  R  e.  B )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )   &    |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )   =>    |-  ( ph  ->  ( G  o.  F )  =  ( x  e.  A  |->  [_ R  /  y ]_ S ) )
 
Theoremfcompt 5361* Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
 |-  ( ( A : D
 --> E  /\  B : C
 --> D )  ->  ( A  o.  B )  =  ( x  e.  C  |->  ( A `  ( B `
  x ) ) ) )
 
Theoremfcoconst 5362 Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.)
 |-  ( ( F  Fn  X  /\  Y  e.  X )  ->  ( F  o.  ( I  X.  { Y } ) )  =  ( I  X.  {
 ( F `  Y ) } ) )
 
Theoremfsn 5363 A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } )
 
Theoremfsng 5364 A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( F : { A } --> { B } 
 <->  F  =  { <. A ,  B >. } )
 )
 
Theoremfsn2 5365 A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
 |-  A  e.  _V   =>    |-  ( F : { A } --> B  <->  ( ( F `
  A )  e.  B  /\  F  =  { <. A ,  ( F `  A ) >. } ) )
 
Theoremxpsng 5366 The cross product of two singletons. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  { B }
 )  =  { <. A ,  B >. } )
 
Theoremxpsn 5367 The cross product of two singletons. (Contributed by NM, 4-Nov-2006.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( { A }  X.  { B } )  =  { <. A ,  B >. }
 
Theoremdfmpt 5368 Alternate definition for the "maps to" notation df-mpt 3848 (although it requires that  B be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.)
 |-  B  e.  _V   =>    |-  ( x  e.  A  |->  B )  = 
 U_ x  e.  A  { <. x ,  B >. }
 
Theoremfnasrn 5369 A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  B  e.  _V   =>    |-  ( x  e.  A  |->  B )  = 
 ran  ( x  e.  A  |->  <. x ,  B >. )
 
Theoremdfmptg 5370 Alternate definition for the "maps to" notation df-mpt 3848 (which requires that  B be a set). (Contributed by Jim Kingdon, 9-Jan-2019.)
 |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. } )
 
Theoremfnasrng 5371 A function expressed as the range of another function. (Contributed by Jim Kingdon, 9-Jan-2019.)
 |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  =  ran  ( x  e.  A  |->  <. x ,  B >. ) )
 
Theoremressnop0 5372 If  A is not in  C, then the restriction of a singleton of  <. A ,  B >. to  C is null. (Contributed by Scott Fenton, 15-Apr-2011.)
 |-  ( -.  A  e.  C  ->  ( { <. A ,  B >. }  |`  C )  =  (/) )
 
Theoremfpr 5373 A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D } )
 
Theoremfprg 5374 A function with a domain of two elements. (Contributed by FL, 2-Feb-2014.)
 |-  ( ( ( A  e.  E  /\  B  e.  F )  /\  ( C  e.  G  /\  D  e.  H )  /\  A  =/=  B ) 
 ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D } )
 
Theoremftpg 5375 A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
 |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } : { X ,  Y ,  Z } --> { A ,  B ,  C }
 )
 
Theoremftp 5376 A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  X  e.  _V   &    |-  Y  e.  _V   &    |-  Z  e.  _V   &    |-  A  =/=  B   &    |-  A  =/=  C   &    |-  B  =/=  C   =>    |-  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } : { A ,  B ,  C } --> { X ,  Y ,  Z }
 
Theoremfnressn 5377 A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
  B ) >. } )
 
Theoremfressnfv 5378 The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F  |`  { B } ) : { B } --> C  <->  ( F `  B )  e.  C ) )
 
Theoremfvconst 5379 The value of a constant function. (Contributed by NM, 30-May-1999.)
 |-  ( ( F : A
 --> { B }  /\  C  e.  A )  ->  ( F `  C )  =  B )
 
Theoremfmptsn 5380* Express a singleton function in maps-to notation. (Contributed by NM, 6-Jun-2006.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 28-Feb-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B ) )
 
Theoremfmptap 5381* Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( R  u.  { A } )  =  S   &    |-  ( x  =  A  ->  C  =  B )   =>    |-  ( ( x  e.  R  |->  C )  u. 
 { <. A ,  B >. } )  =  ( x  e.  S  |->  C )
 
Theoremfmptapd 5382* Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017.)
 |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  B  e.  _V )   &    |-  ( ph  ->  ( R  u.  { A } )  =  S )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  C  =  B )   =>    |-  ( ph  ->  ( ( x  e.  R  |->  C )  u.  { <. A ,  B >. } )  =  ( x  e.  S  |->  C ) )
 
Theoremfmptpr 5383* Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  D  e.  Y )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  E  =  C )   &    |-  ( ( ph  /\  x  =  B )  ->  E  =  D )   =>    |-  ( ph  ->  { <. A ,  C >. ,  <. B ,  D >. }  =  ( x  e.  { A ,  B }  |->  E ) )
 
Theoremfvresi 5384 The value of a restricted identity function. (Contributed by NM, 19-May-2004.)
 |-  ( B  e.  A  ->  ( (  _I  |`  A ) `
  B )  =  B )
 
Theoremfvunsng 5385 Remove an ordered pair not participating in a function value. (Contributed by Jim Kingdon, 7-Jan-2019.)
 |-  ( ( D  e.  V  /\  B  =/=  D )  ->  ( ( A  u.  { <. B ,  C >. } ) `  D )  =  ( A `  D ) )
 
Theoremfvsn 5386 The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( { <. A ,  B >. } `  A )  =  B
 
Theoremfvsng 5387 The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { <. A ,  B >. } `  A )  =  B )
 
Theoremfvsnun1 5388 The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 5389. (Contributed by NM, 23-Sep-2007.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )   =>    |-  ( G `  A )  =  B
 
Theoremfvsnun2 5389 The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5388. (Contributed by NM, 23-Sep-2007.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )   =>    |-  ( D  e.  ( C  \  { A }
 )  ->  ( G `  D )  =  ( F `  D ) )
 
Theoremfsnunf 5390 Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
 |-  ( ( F : S
 --> T  /\  ( X  e.  V  /\  -.  X  e.  S )  /\  Y  e.  T ) 
 ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X }
 ) --> T )
 
Theoremfsnunfv 5391 Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.)
 |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } ) `  X )  =  Y )
 
Theoremfsnunres 5392 Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
 |-  ( ( F  Fn  S  /\  -.  X  e.  S )  ->  ( ( F  u.  { <. X ,  Y >. } )  |`  S )  =  F )
 
Theoremfvpr1 5393 The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
 |-  A  e.  _V   &    |-  C  e.  _V   =>    |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  A )  =  C )
 
Theoremfvpr2 5394 The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
 |-  B  e.  _V   &    |-  D  e.  _V   =>    |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  B )  =  D )
 
Theoremfvpr1g 5395 The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
 |-  ( ( A  e.  V  /\  C  e.  W  /\  A  =/=  B ) 
 ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  A )  =  C )
 
Theoremfvpr2g 5396 The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
 |-  ( ( B  e.  V  /\  D  e.  W  /\  A  =/=  B ) 
 ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  B )  =  D )
 
Theoremfvtp1g 5397 The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
 |-  ( ( ( A  e.  V  /\  D  e.  W )  /\  ( A  =/=  B  /\  A  =/=  C ) )  ->  ( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  A )  =  D )
 
Theoremfvtp2g 5398 The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
 |-  ( ( ( B  e.  V  /\  E  e.  W )  /\  ( A  =/=  B  /\  B  =/=  C ) )  ->  ( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  B )  =  E )
 
Theoremfvtp3g 5399 The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
 |-  ( ( ( C  e.  V  /\  F  e.  W )  /\  ( A  =/=  C  /\  B  =/=  C ) )  ->  ( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  C )  =  F )
 
Theoremfvtp1 5400 The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
 |-  A  e.  _V   &    |-  D  e.  _V   =>    |-  ( ( A  =/=  B 
 /\  A  =/=  C )  ->  ( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  A )  =  D )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10511
  Copyright terms: Public domain < Previous  Next >