HomeHome Intuitionistic Logic Explorer
Theorem List (p. 69 of 106)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6801-6900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcauappcvgprlemm 6801* Lemma for cauappcvgpr 6818. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  ( E. s  e.  Q.  s  e.  ( 1st `  L )  /\  E. r  e.  Q.  r  e.  ( 2nd `  L ) ) )
 
Theoremcauappcvgprlemopl 6802* Lemma for cauappcvgpr 6818. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
 
Theoremcauappcvgprlemlol 6803* Lemma for cauappcvgpr 6818. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 4-Aug-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
 
Theoremcauappcvgprlemopu 6804* Lemma for cauappcvgpr 6818. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ( ph  /\  r  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcauappcvgprlemupu 6805* Lemma for cauappcvgpr 6818. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 4-Aug-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  <Q  r  /\  s  e.  ( 2nd `  L ) )  ->  r  e.  ( 2nd `  L ) )
 
Theoremcauappcvgprlemrnd 6806* Lemma for cauappcvgpr 6818. The putative limit is rounded. (Contributed by Jim Kingdon, 18-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  (
 A. s  e.  Q.  ( s  e.  ( 1st `  L )  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) ) 
 /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) ) )
 
Theoremcauappcvgprlemdisj 6807* Lemma for cauappcvgpr 6818. The putative limit is disjoint. (Contributed by Jim Kingdon, 18-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcauappcvgprlemloc 6808* Lemma for cauappcvgpr 6818. The putative limit is located. (Contributed by Jim Kingdon, 18-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  A. s  e.  Q.  A. r  e.  Q.  (
 s  <Q  r  ->  (
 s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L ) ) ) )
 
Theoremcauappcvgprlemcl 6809* Lemma for cauappcvgpr 6818. The putative limit is a positive real. (Contributed by Jim Kingdon, 20-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  L  e.  P. )
 
Theoremcauappcvgprlemladdfu 6810* Lemma for cauappcvgprlemladd 6814. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  C_  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( ( F `  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. ) )
 
Theoremcauappcvgprlemladdfl 6811* Lemma for cauappcvgprlemladd 6814. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  C_  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( ( F `  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. ) )
 
Theoremcauappcvgprlemladdru 6812* Lemma for cauappcvgprlemladd 6814. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 2nd `  <. { l  e. 
 Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( ( F `  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. )  C_  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )
 
Theoremcauappcvgprlemladdrl 6813* Lemma for cauappcvgprlemladd 6814. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 1st `  <. { l  e. 
 Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( ( F `  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. )  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )
 
Theoremcauappcvgprlemladd 6814* Lemma for cauappcvgpr 6818. This takes  L and offsets it by the positive fraction  S. (Contributed by Jim Kingdon, 23-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  = 
 <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( ( F `
  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. )
 
Theoremcauappcvgprlem1 6815* Lemma for cauappcvgpr 6818. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  R  e.  Q. )   =>    |-  ( ph  ->  <. { l  |  l  <Q  ( F `
  Q ) } ,  { u  |  ( F `  Q ) 
 <Q  u } >.  <P  ( L 
 +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )
 
Theoremcauappcvgprlem2 6816* Lemma for cauappcvgpr 6818. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  R  e.  Q. )   =>    |-  ( ph  ->  L  <P 
 <. { l  |  l 
 <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) 
 <Q  u } >. )
 
Theoremcauappcvgprlemlim 6817* Lemma for cauappcvgpr 6818. The putative limit is a limit. (Contributed by Jim Kingdon, 20-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  A. q  e.  Q.  A. r  e.  Q.  ( <. { l  |  l 
 <Q  ( F `  q
 ) } ,  { u  |  ( F `  q )  <Q  u } >. 
 <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  ( q  +Q  r ) 
 <Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  ( ( F `  q )  +Q  ( q  +Q  r
 ) ) } ,  { u  |  (
 ( F `  q
 )  +Q  ( q  +Q  r ) )  <Q  u } >. ) )
 
Theoremcauappcvgpr 6818* A Cauchy approximation has a limit. A Cauchy approximation, here  F, is similar to a Cauchy sequence but is indexed by the desired tolerance (that is, how close together terms needs to be) rather than by natural numbers. This is basically Theorem 11.2.12 of [HoTT], p. (varies) with a few differences such as that we are proving the existence of a limit without anything about how fast it converges (that is, mere existence instead of existence, in HoTT terms), and that the codomain of  F is  Q. rather than  P.. We also specify that every term needs to be larger than a fraction  A, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of caucvgpr 6838 and caucvgprpr 6868 but is somewhat simpler, so reading this one first may help understanding the other two.

(Contributed by Jim Kingdon, 19-Jun-2020.)

 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   =>    |-  ( ph  ->  E. y  e.  P.  A. q  e. 
 Q.  A. r  e.  Q.  ( <. { l  |  l  <Q  ( F `  q ) } ,  { u  |  ( F `  q )  <Q  u } >.  <P  ( y 
 +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  (
 q  +Q  r )  <Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  ( ( F `  q )  +Q  ( q  +Q  r
 ) ) } ,  { u  |  (
 ( F `  q
 )  +Q  ( q  +Q  r ) )  <Q  u } >. ) )
 
Theoremarchrecnq 6819* Archimedean principle for fractions (reciprocal version). (Contributed by Jim Kingdon, 27-Sep-2020.)
 |-  ( A  e.  Q.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  A )
 
Theoremarchrecpr 6820* Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.)
 |-  ( A  e.  P.  ->  E. j  e.  N.  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  A )
 
Theoremcaucvgprlemk 6821 Lemma for caucvgpr 6838. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 9-Oct-2020.)
 |-  ( ph  ->  J  <N  K )   &    |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )   =>    |-  ( ph  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q )
 
Theoremcaucvgprlemnkj 6822* Lemma for caucvgpr 6838. Part of disjointness. (Contributed by Jim Kingdon, 23-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  K  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  -.  (
 ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
 )  <Q  ( F `  K )  /\  ( ( F `  J )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q  S ) )
 
Theoremcaucvgprlemnbj 6823* Lemma for caucvgpr 6838. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 18-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  B  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   =>    |-  ( ph  ->  -.  (
 ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
 )  +Q  ( *Q ` 
 [ <. J ,  1o >. ]  ~Q  ) )  <Q  ( F `  J ) )
 
Theoremcaucvgprlemm 6824* Lemma for caucvgpr 6838. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  ( E. s  e.  Q.  s  e.  ( 1st `  L )  /\  E. r  e.  Q.  r  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprlemopl 6825* Lemma for caucvgpr 6838. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
 
Theoremcaucvgprlemlol 6826* Lemma for caucvgpr 6838. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 20-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
 
Theoremcaucvgprlemopu 6827* Lemma for caucvgpr 6838. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ( ph  /\  r  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprlemupu 6828* Lemma for caucvgpr 6838. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 20-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  <Q  r  /\  s  e.  ( 2nd `  L ) )  ->  r  e.  ( 2nd `  L ) )
 
Theoremcaucvgprlemrnd 6829* Lemma for caucvgpr 6838. The putative limit is rounded. (Contributed by Jim Kingdon, 27-Sep-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  (
 A. s  e.  Q.  ( s  e.  ( 1st `  L )  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) ) 
 /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) ) )
 
Theoremcaucvgprlemdisj 6830* Lemma for caucvgpr 6838. The putative limit is disjoint. (Contributed by Jim Kingdon, 27-Sep-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprlemloc 6831* Lemma for caucvgpr 6838. The putative limit is located. (Contributed by Jim Kingdon, 27-Sep-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  A. s  e.  Q.  A. r  e.  Q.  (
 s  <Q  r  ->  (
 s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L ) ) ) )
 
Theoremcaucvgprlemcl 6832* Lemma for caucvgpr 6838. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  L  e.  P. )
 
Theoremcaucvgprlemladdfu 6833* Lemma for caucvgpr 6838. Adding  S after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 9-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  C_  { u  e.  Q.  |  E. j  e.  N.  ( ( ( F `
  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  +Q  S ) 
 <Q  u } )
 
Theoremcaucvgprlemladdrl 6834* Lemma for caucvgpr 6838. Adding  S after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 8-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  ( ( F `  j )  +Q  S ) }  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )
 
Theoremcaucvgprlem1 6835* Lemma for caucvgpr 6838. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  J  <N  K )   &    |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )   =>    |-  ( ph  ->  <. { l  |  l  <Q  ( F `  K ) } ,  { u  |  ( F `  K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) )
 
Theoremcaucvgprlem2 6836* Lemma for caucvgpr 6838. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  J  <N  K )   &    |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )   =>    |-  ( ph  ->  L 
 <P  <. { l  |  l  <Q  ( ( F `  K )  +Q  Q ) } ,  { u  |  (
 ( F `  K )  +Q  Q )  <Q  u } >. )
 
Theoremcaucvgprlemlim 6837* Lemma for caucvgpr 6838. The putative limit is a limit. (Contributed by Jim Kingdon, 1-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  ( j  <N  k 
 ->  ( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( L 
 +P.  <. { l  |  l  <Q  x } ,  { u  |  x  <Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  ( ( F `  k )  +Q  x ) } ,  { u  |  (
 ( F `  k
 )  +Q  x )  <Q  u } >. ) ) )
 
Theoremcaucvgpr 6838* A Cauchy sequence of positive fractions with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within  1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a fraction  A, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of cauappcvgpr 6818 and caucvgprpr 6868. Reading cauappcvgpr 6818 first (the simplest of the three) might help understanding the other two.

(Contributed by Jim Kingdon, 18-Jun-2020.)

 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   =>    |-  ( ph  ->  E. y  e.  P.  A. x  e. 
 Q.  E. j  e.  N.  A. k  e.  N.  (
 j  <N  k  ->  ( <. { l  |  l 
 <Q  ( F `  k
 ) } ,  { u  |  ( F `  k )  <Q  u } >. 
 <P  ( y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x  <Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  ( ( F `  k )  +Q  x ) } ,  { u  |  (
 ( F `  k
 )  +Q  x )  <Q  u } >. ) ) )
 
Theoremcaucvgprprlemk 6839* Lemma for caucvgprpr 6868. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 28-Nov-2020.)
 |-  ( ph  ->  J  <N  K )   &    |-  ( ph  ->  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )   =>    |-  ( ph  ->  <. { l  |  l  <Q  ( *Q ` 
 [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )
 
Theoremcaucvgprprlemloccalc 6840* Lemma for caucvgprpr 6868. Rearranging some expressions for caucvgprprlemloc 6859. (Contributed by Jim Kingdon, 8-Feb-2021.)
 |-  ( ph  ->  S  <Q  T )   &    |-  ( ph  ->  Y  e.  Q. )   &    |-  ( ph  ->  ( S  +Q  Y )  =  T )   &    |-  ( ph  ->  X  e.  Q. )   &    |-  ( ph  ->  ( X  +Q  X ) 
 <Q  Y )   &    |-  ( ph  ->  M  e.  N. )   &    |-  ( ph  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X )   =>    |-  ( ph  ->  (
 <. { l  |  l 
 <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
 ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q  u } >.  +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  <. { l  |  l  <Q  T } ,  { u  |  T  <Q  u } >. )
 
Theoremcaucvgprprlemell 6841* Lemma for caucvgprpr 6868. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.)
 |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  (
 l  +Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >.  <P  ( F `
  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( X  e.  ( 1st `  L )  <->  ( X  e.  Q. 
 /\  E. b  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  b
 ) ) )
 
Theoremcaucvgprprlemelu 6842* Lemma for caucvgprpr 6868. Membership in the upper cut of the putative limit. (Contributed by Jim Kingdon, 28-Jan-2021.)
 |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  (
 l  +Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >.  <P  ( F `
  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( X  e.  ( 2nd `  L )  <->  ( X  e.  Q. 
 /\  E. b  e.  N.  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  X } ,  {
 q  |  X  <Q  q } >. ) )
 
Theoremcaucvgprprlemcbv 6843* Lemma for caucvgprpr 6868. Change bound variables in Cauchy condition. (Contributed by Jim Kingdon, 12-Feb-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   =>    |-  ( ph  ->  A. a  e.  N.  A. b  e. 
 N.  ( a  <N  b 
 ->  ( ( F `  a )  <P  ( ( F `  b ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  b ) 
 <P  ( ( F `  a )  +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )
 
Theoremcaucvgprprlemval 6844* Lemma for caucvgprpr 6868. Cauchy condition expressed in terms of classes. (Contributed by Jim Kingdon, 3-Mar-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   =>    |-  ( ( ph  /\  A  <N  B )  ->  (
 ( F `  A )  <P  ( ( F `
  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. A ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. A ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 /\  ( F `  B )  <P  ( ( F `  A ) 
 +P.  <. { p  |  p  <Q  ( *Q `  [ <. A ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. A ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
 
Theoremcaucvgprprlemnkltj 6845* Lemma for caucvgprpr 6868. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  K  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ( ph  /\  K  <N  J )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  K )  /\  ( ( F `
  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. ) )
 
Theoremcaucvgprprlemnkeqj 6846* Lemma for caucvgprpr 6868. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  K  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ( ph  /\  K  =  J )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  K )  /\  ( ( F `
  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. ) )
 
Theoremcaucvgprprlemnjltk 6847* Lemma for caucvgprpr 6868. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  K  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ( ph  /\  J  <N  K )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  K )  /\  ( ( F `
  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. ) )
 
Theoremcaucvgprprlemnkj 6848* Lemma for caucvgprpr 6868. Part of disjointness. (Contributed by Jim Kingdon, 20-Jan-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  K  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  K )  /\  ( ( F `
  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. ) )
 
Theoremcaucvgprprlemnbj 6849* Lemma for caucvgprpr 6868. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 17-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  B  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   =>    |-  ( ph  ->  -.  (
 ( ( F `  B )  +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 <P  ( F `  J ) )
 
Theoremcaucvgprprlemml 6850* Lemma for caucvgprpr 6868. The lower cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
 
Theoremcaucvgprprlemmu 6851* Lemma for caucvgprpr 6868. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
 
Theoremcaucvgprprlemm 6852* Lemma for caucvgprpr 6868. The putative limit is inhabited. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  ( E. s  e.  Q.  s  e.  ( 1st `  L )  /\  E. t  e.  Q.  t  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprprlemopl 6853* Lemma for caucvgprpr 6868. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ( ph  /\  s  e.  ( 1st `  L ) )  ->  E. t  e.  Q.  ( s  <Q  t 
 /\  t  e.  ( 1st `  L ) ) )
 
Theoremcaucvgprprlemlol 6854* Lemma for caucvgprpr 6868. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
 
Theoremcaucvgprprlemopu 6855* Lemma for caucvgprpr 6868. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ( ph  /\  t  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q  t 
 /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprprlemupu 6856* Lemma for caucvgprpr 6868. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ( ph  /\  s  <Q  t  /\  s  e.  ( 2nd `  L ) )  ->  t  e.  ( 2nd `  L ) )
 
Theoremcaucvgprprlemrnd 6857* Lemma for caucvgprpr 6868. The putative limit is rounded. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  ( A. s  e.  Q.  ( s  e.  ( 1st `  L )  <->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) ) 
 /\  A. t  e.  Q.  ( t  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) ) )
 
Theoremcaucvgprprlemdisj 6858* Lemma for caucvgprpr 6868. The putative limit is disjoint. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprprlemloc 6859* Lemma for caucvgprpr 6868. The putative limit is located. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  A. s  e.  Q.  A. t  e. 
 Q.  ( s  <Q  t 
 ->  ( s  e.  ( 1st `  L )  \/  t  e.  ( 2nd `  L ) ) ) )
 
Theoremcaucvgprprlemcl 6860* Lemma for caucvgprpr 6868. The putative limit is a positive real. (Contributed by Jim Kingdon, 21-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  L  e.  P. )
 
Theoremcaucvgprprlemclphr 6861* Lemma for caucvgprpr 6868. The putative limit is a positive real. Like caucvgprprlemcl 6860 but without a distinct variable constraint between  ph and  r. (Contributed by Jim Kingdon, 19-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  L  e.  P. )
 
Theoremcaucvgprprlemexbt 6862* Lemma for caucvgprpr 6868. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 16-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  T  e.  P. )   &    |-  ( ph  ->  ( L  +P.  <. { p  |  p  <Q  Q } ,  {
 q  |  Q  <Q  q } >. )  <P  T )   =>    |-  ( ph  ->  E. b  e.  N.  ( ( ( F `  b ) 
 +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  T )
 
Theoremcaucvgprprlemexb 6863* Lemma for caucvgprpr 6868. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 15-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  R  e.  N. )   =>    |-  ( ph  ->  ( ( ( L  +P.  Q )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. R ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. R ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( ( F `  R )  +P.  Q )  ->  E. b  e.  N.  ( ( ( F `
  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 +P.  ( Q  +P.  <. { p  |  p  <Q  ( *Q `  [ <. R ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. R ,  1o >. ]  ~Q  )  <Q  q } >. ) )  <P  ( ( F `  R )  +P.  Q ) ) )
 
Theoremcaucvgprprlemaddq 6864* Lemma for caucvgprpr 6868. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 5-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  X  e.  P. )   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  E. r  e.  N.  ( X  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( ( F `  r
 )  +P.  Q )
 )   =>    |-  ( ph  ->  X  <P  ( L  +P.  Q ) )
 
Theoremcaucvgprprlem1 6865* Lemma for caucvgprpr 6868. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  J 
 <N  K )   &    |-  ( ph  ->  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )   =>    |-  ( ph  ->  ( F `  K )  <P  ( L  +P.  Q ) )
 
Theoremcaucvgprprlem2 6866* Lemma for caucvgprpr 6868. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  J 
 <N  K )   &    |-  ( ph  ->  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )   =>    |-  ( ph  ->  L  <P  ( ( F `  K )  +P.  Q ) )
 
Theoremcaucvgprprlemlim 6867* Lemma for caucvgprpr 6868. The putative limit is a limit. (Contributed by Jim Kingdon, 21-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  A. x  e.  P.  E. j  e. 
 N.  A. k  e.  N.  ( j  <N  k  ->  ( ( F `  k )  <P  ( L 
 +P.  x )  /\  L  <P  ( ( F `
  k )  +P.  x ) ) ) )
 
Theoremcaucvgprpr 6868* A Cauchy sequence of positive reals with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within  1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a given value  A, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This is similar to caucvgpr 6838 except that values of the sequence are positive reals rather than positive fractions. Reading that proof first (or cauappcvgpr 6818) might help in understanding this one, as they are slightly simpler but similarly structured. (Contributed by Jim Kingdon, 14-Nov-2020.)

 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [