HomeHome Intuitionistic Logic Explorer
Theorem List (p. 69 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6801-6900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremunsnfidcex 6801 The  B  e.  V condition in unsnfi 6800. This is intended to show that unsnfi 6800 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
 |-  ( ( A  e.  Fin  /\  -.  B  e.  A  /\  ( A  u.  { B } )  e.  Fin )  -> DECID  -.  B  e.  _V )
 
Theoremunsnfidcel 6802 The  -.  B  e.  A condition in unsnfi 6800. This is intended to show that unsnfi 6800 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
 |-  ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  -> DECID  -.  B  e.  A )
 
Theoremunfidisj 6803 The union of two disjoint finite sets is finite. (Contributed by Jim Kingdon, 25-Feb-2022.)
 |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e. 
 Fin )
 
Theoremundifdcss 6804* Union of complementary parts into whole and decidability. (Contributed by Jim Kingdon, 17-Jun-2022.)
 |-  ( A  =  ( B  u.  ( A 
 \  B ) )  <-> 
 ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B ) )
 
Theoremundifdc 6805* Union of complementary parts into whole. This is a case where we can strengthen undifss 3438 from subset to equality. (Contributed by Jim Kingdon, 17-Jun-2022.)
 |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  Fin  /\  B  C_  A )  ->  A  =  ( B  u.  ( A  \  B ) ) )
 
Theoremundiffi 6806 Union of complementary parts into whole. This is a case where we can strengthen undifss 3438 from subset to equality. (Contributed by Jim Kingdon, 2-Mar-2022.)
 |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  A  =  ( B  u.  ( A  \  B ) ) )
 
Theoremunfiin 6807 The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.)
 |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  e.  Fin )  ->  ( A  u.  B )  e.  Fin )
 
Theoremprfidisj 6808 A pair is finite if it consists of two unequal sets. For the case where  A  =  B, see snfig 6701. For the cases where one or both is a proper class, see prprc1 3626, prprc2 3627, or prprc 3628. (Contributed by Jim Kingdon, 31-May-2022.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B ) 
 ->  { A ,  B }  e.  Fin )
 
Theoremtpfidisj 6809 A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  A  =/=  C )   &    |-  ( ph  ->  B  =/=  C )   =>    |-  ( ph  ->  { A ,  B ,  C }  e.  Fin )
 
Theoremfiintim 6810* If a class is closed under pairwise intersections, then it is closed under nonempty finite intersections. The converse would appear to require an additional condition, such as  x and  y not being equal, or  A having decidable equality.

This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use a pairwise intersection and some texts use a finite intersection, but most topology texts assume excluded middle (in which case the two intersection properties would be equivalent). (Contributed by NM, 22-Sep-2002.) (Revised by Jim Kingdon, 14-Jan-2023.)

 |-  ( A. x  e.  A  A. y  e.  A  ( x  i^i  y )  e.  A  ->  A. x ( ( x  C_  A  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  A ) )
 
Theoremxpfi 6811 The Cartesian product of two finite sets is finite. Lemma 8.1.16 of [AczelRathjen], p. 74. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.)
 |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  X.  B )  e.  Fin )
 
Theorem3xpfi 6812 The Cartesian product of three finite sets is a finite set. (Contributed by Alexander van der Vekens, 11-Mar-2018.)
 |-  ( V  e.  Fin  ->  ( ( V  X.  V )  X.  V )  e.  Fin )
 
Theoremfisseneq 6813 A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.)
 |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A  ~~  B )  ->  A  =  B )
 
Theoremphpeqd 6814 Corollary of the Pigeonhole Principle using equality. Strengthening of phpm 6752 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B 
 C_  A )   &    |-  ( ph  ->  A  ~~  B )   =>    |-  ( ph  ->  A  =  B )
 
Theoremssfirab 6815* A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A. x  e.  A DECID  ps )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  e.  Fin )
 
Theoremssfidc 6816* A subset of a finite set is finite if membership in the subset is decidable. (Contributed by Jim Kingdon, 27-May-2022.)
 |-  ( ( A  e.  Fin  /\  B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  ->  B  e.  Fin )
 
Theoremsnon0 6817 An ordinal which is a singleton is  { (/) }. (Contributed by Jim Kingdon, 19-Oct-2021.)
 |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  A  =  (/) )
 
Theoremfnfi 6818 A version of fnex 5635 for finite sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
 |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  F  e.  Fin )
 
Theoremfundmfi 6819 The domain of a finite function is finite. (Contributed by Jim Kingdon, 5-Feb-2022.)
 |-  ( ( A  e.  Fin  /\  Fun  A )  ->  dom  A  e.  Fin )
 
Theoremfundmfibi 6820 A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020.)
 |-  ( Fun  F  ->  ( F  e.  Fin  <->  dom  F  e.  Fin ) )
 
Theoremresfnfinfinss 6821 The restriction of a function to a finite subset of its domain is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.)
 |-  ( ( F  Fn  A  /\  B  e.  Fin  /\  B  C_  A )  ->  ( F  |`  B )  e.  Fin )
 
Theoremrelcnvfi 6822 If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.)
 |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  e.  Fin )
 
Theoremfunrnfi 6823 The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.)
 |-  ( ( Rel  A  /\  Fun  `' A  /\  A  e.  Fin )  ->  ran  A  e.  Fin )
 
Theoremf1ofi 6824 If a 1-1 and onto function has a finite domain, its range is finite. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( ( A  e.  Fin  /\  F : A -1-1-onto-> B )  ->  B  e.  Fin )
 
Theoremf1dmvrnfibi 6825 A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 6826. (Contributed by AV, 10-Jan-2020.)
 |-  ( ( A  e.  V  /\  F : A -1-1-> B )  ->  ( F  e.  Fin  <->  ran  F  e.  Fin ) )
 
Theoremf1vrnfibi 6826 A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 6825. (Contributed by AV, 10-Jan-2020.)
 |-  ( ( F  e.  V  /\  F : A -1-1-> B )  ->  ( F  e.  Fin  <->  ran  F  e.  Fin ) )
 
Theoremiunfidisj 6827* The finite union of disjoint finite sets is finite. Note that  B depends on  x, i.e. can be thought of as  B ( x ). (Contributed by NM, 23-Mar-2006.) (Revised by Jim Kingdon, 7-Oct-2022.)
 |-  ( ( A  e.  Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B )  ->  U_ x  e.  A  B  e.  Fin )
 
Theoremf1finf1o 6828 Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.)
 |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( F : A -1-1-> B  <->  F : A -1-1-onto-> B ) )
 
Theoremen1eqsn 6829 A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.)
 |-  ( ( A  e.  B  /\  B  ~~  1o )  ->  B  =  { A } )
 
Theoremen1eqsnbi 6830 A set containing an element has exactly one element iff it is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
 |-  ( A  e.  B  ->  ( B  ~~  1o  <->  B  =  { A } )
 )
 
Theoremsnexxph 6831* A case where the antecedent of snexg 4103 is not needed. The class  { x  | 
ph } is from dcextest 4490. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.)
 |- 
 { { x  |  ph
 } }  e.  _V
 
Theorempreimaf1ofi 6832 The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.)
 |-  ( ph  ->  C  C_  B )   &    |-  ( ph  ->  F : A -1-1-onto-> B )   &    |-  ( ph  ->  C  e.  Fin )   =>    |-  ( ph  ->  ( `' F " C )  e.  Fin )
 
Theoremfidcenumlemim 6833* Lemma for fidcenum 6837. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.)
 |-  ( A  e.  Fin  ->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e.  om  E. f  f : n -onto-> A ) )
 
Theoremfidcenumlemrks 6834* Lemma for fidcenum 6837. Induction step for fidcenumlemrk 6835. (Contributed by Jim Kingdon, 20-Oct-2022.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : N -onto-> A )   &    |-  ( ph  ->  J  e.  om )   &    |-  ( ph  ->  suc  J  C_  N )   &    |-  ( ph  ->  ( X  e.  ( F " J )  \/  -.  X  e.  ( F " J ) ) )   &    |-  ( ph  ->  X  e.  A )   =>    |-  ( ph  ->  ( X  e.  ( F " suc  J )  \/ 
 -.  X  e.  ( F " suc  J ) ) )
 
Theoremfidcenumlemrk 6835* Lemma for fidcenum 6837. (Contributed by Jim Kingdon, 20-Oct-2022.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : N -onto-> A )   &    |-  ( ph  ->  K  e.  om )   &    |-  ( ph  ->  K  C_  N )   &    |-  ( ph  ->  X  e.  A )   =>    |-  ( ph  ->  ( X  e.  ( F " K )  \/  -.  X  e.  ( F " K ) ) )
 
Theoremfidcenumlemr 6836* Lemma for fidcenum 6837. Reverse direction (put into deduction form). (Contributed by Jim Kingdon, 19-Oct-2022.)
 |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )   &    |-  ( ph  ->  F : N -onto-> A )   &    |-  ( ph  ->  N  e.  om )   =>    |-  ( ph  ->  A  e.  Fin )
 
Theoremfidcenum 6837* A set is finite if and only if it has decidable equality and is finitely enumerable. Proposition 8.1.11 of [AczelRathjen], p. 72. The definition of "finitely enumerable" as  E. n  e. 
om E. f f : n -onto-> A is Definition 8.1.4 of [AczelRathjen], p. 71. (Contributed by Jim Kingdon, 19-Oct-2022.)
 |-  ( A  e.  Fin  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e.  om  E. f  f : n -onto-> A ) )
 
2.6.31  Schroeder-Bernstein Theorem
 
Theoremsbthlem1 6838* Lemma for isbth 6848. (Contributed by NM, 22-Mar-1998.)
 |-  A  e.  _V   &    |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f " x ) ) ) 
 C_  ( A  \  x ) ) }   =>    |-  U. D  C_  ( A  \  (
 g " ( B  \  ( f " U. D ) ) ) )
 
Theoremsbthlem2 6839* Lemma for isbth 6848. (Contributed by NM, 22-Mar-1998.)
 |-  A  e.  _V   &    |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f " x ) ) ) 
 C_  ( A  \  x ) ) }   =>    |-  ( ran  g  C_  A  ->  ( A  \  ( g
 " ( B  \  ( f " U. D ) ) ) )  C_  U. D )
 
Theoremsbthlemi3 6840* Lemma for isbth 6848. (Contributed by NM, 22-Mar-1998.)
 |-  A  e.  _V   &    |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f " x ) ) ) 
 C_  ( A  \  x ) ) }   =>    |-  (
 (EXMID  /\  ran  g  C_  A )  ->  ( g "
 ( B  \  (
 f " U. D ) ) )  =  ( A  \  U. D ) )
 
Theoremsbthlemi4 6841* Lemma for isbth 6848. (Contributed by NM, 27-Mar-1998.)
 |-  A  e.  _V   &    |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f " x ) ) ) 
 C_  ( A  \  x ) ) }   =>    |-  (
 (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A 
 \  U. D ) )  =  ( B  \  ( f " U. D ) ) )
 
Theoremsbthlemi5 6842* Lemma for isbth 6848. (Contributed by NM, 22-Mar-1998.)
 |-  A  e.  _V   &    |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f " x ) ) ) 
 C_  ( A  \  x ) ) }   &    |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
 \  U. D ) ) )   =>    |-  ( (EXMID 
 /\  ( dom  f  =  A  /\  ran  g  C_  A ) )  ->  dom  H  =  A )
 
Theoremsbthlemi6 6843* Lemma for isbth 6848. (Contributed by NM, 27-Mar-1998.)
 |-  A  e.  _V   &    |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f " x ) ) ) 
 C_  ( A  \  x ) ) }   &    |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
 \  U. D ) ) )   =>    |-  ( ( (EXMID  /\  ran  f  C_  B )  /\  ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  H  =  B )
 
Theoremsbthlem7 6844* Lemma for isbth 6848. (Contributed by NM, 27-Mar-1998.)
 |-  A  e.  _V   &    |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f " x ) ) ) 
 C_  ( A  \  x ) ) }   &    |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
 \  U. D ) ) )   =>    |-  ( ( Fun  f  /\  Fun  `' g ) 
 ->  Fun  H )
 
Theoremsbthlemi8 6845* Lemma for isbth 6848. (Contributed by NM, 27-Mar-1998.)
 |-  A  e.  _V   &    |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f " x ) ) ) 
 C_  ( A  \  x ) ) }   &    |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
 \  U. D ) ) )   =>    |-  ( ( (EXMID  /\  Fun  `' f )  /\  (
 ( ( Fun  g  /\  dom  g  =  B )  /\  ran  g  C_  A )  /\  Fun  `' g
 ) )  ->  Fun  `' H )
 
Theoremsbthlemi9 6846* Lemma for isbth 6848. (Contributed by NM, 28-Mar-1998.)
 |-  A  e.  _V   &    |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f " x ) ) ) 
 C_  ( A  \  x ) ) }   &    |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
 \  U. D ) ) )   =>    |-  ( (EXMID 
 /\  f : A -1-1-> B 
 /\  g : B -1-1-> A )  ->  H : A
 -1-1-onto-> B )
 
Theoremsbthlemi10 6847* Lemma for isbth 6848. (Contributed by NM, 28-Mar-1998.)
 |-  A  e.  _V   &    |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f " x ) ) ) 
 C_  ( A  \  x ) ) }   &    |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
 \  U. D ) ) )   &    |-  B  e.  _V   =>    |-  (
 (EXMID  /\  ( A  ~<_  B  /\  B 
 ~<_  A ) )  ->  A  ~~  B )
 
Theoremisbth 6848 Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 
A is smaller (has lower cardinality) than  B and vice-versa, then  A and  B are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 6838 through sbthlemi10 6847; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlemi10 6847. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. The proof does require the law of the excluded middle which cannot be avoided as shown at exmidsbthr 13207. (Contributed by NM, 8-Jun-1998.)
 |-  ( (EXMID 
 /\  ( A  ~<_  B  /\  B 
 ~<_  A ) )  ->  A  ~~  B )
 
2.6.32  Finite intersections
 
Syntaxcfi 6849 Extend class notation with the function whose value is the class of finite intersections of the elements of a given set.
 class  fi
 
Definitiondf-fi 6850* Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 6853). (Contributed by FL, 27-Apr-2008.)
 |- 
 fi  =  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i  Fin )
 z  =  |^| y } )
 
Theoremfival 6851* The set of all the finite intersections of the elements of  A. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
 |-  ( A  e.  V  ->  ( fi `  A )  =  { y  |  E. x  e.  ( ~P A  i^i  Fin )
 y  =  |^| x } )
 
Theoremelfi 6852* Specific properties of an element of 
( fi `  B
). (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x ) )
 
Theoremelfi2 6853* The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  (
 ( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x ) )
 
Theoremelfir 6854 Sufficient condition for an element of  ( fi `  B ). (Contributed by Mario Carneiro, 24-Nov-2013.)
 |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e.  Fin ) )  ->  |^| A  e.  ( fi
 `  B ) )
 
Theoremssfii 6855 Any element of a set  A is the intersection of a finite subset of  A. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
 |-  ( A  e.  V  ->  A  C_  ( fi `  A ) )
 
Theoremfi0 6856 The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.)
 |-  ( fi `  (/) )  =  (/)
 
Theoremfieq0 6857 A set is empty iff the class of all the finite intersections of that set is empty. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
 |-  ( A  e.  V  ->  ( A  =  (/)  <->  ( fi `  A )  =  (/) ) )
 
Theoremfiss 6858 Subset relationship for function 
fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
 |-  ( ( B  e.  V  /\  A  C_  B )  ->  ( fi `  A )  C_  ( fi
 `  B ) )
 
Theoremfiuni 6859 The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
 |-  ( A  e.  V  ->  U. A  =  U. ( fi `  A ) )
 
Theoremfipwssg 6860 If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015.)
 |-  ( ( A  e.  V  /\  A  C_  ~P X )  ->  ( fi `  A )  C_  ~P X )
 
Theoremfifo 6861* Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.)
 |-  F  =  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  |->  |^| y )   =>    |-  ( A  e.  V  ->  F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto->
 ( fi `  A ) )
 
2.6.33  Supremum and infimum
 
Syntaxcsup 6862 Extend class notation to include supremum of class  A. Here  R is ordinarily a relation that strictly orders class  B. For example,  R could be 'less than' and  B could be the set of real numbers.
 class  sup ( A ,  B ,  R )
 
Syntaxcinf 6863 Extend class notation to include infimum of class  A. Here  R is ordinarily a relation that strictly orders class  B. For example,  R could be 'less than' and  B could be the set of real numbers.
 class inf ( A ,  B ,  R )
 
Definitiondf-sup 6864* Define the supremum of class  A. It is meaningful when 
R is a relation that strictly orders  B and when the supremum exists. (Contributed by NM, 22-May-1999.)
 |- 
 sup ( A ,  B ,  R )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  (
 y R x  ->  E. z  e.  A  y R z ) ) }
 
Definitiondf-inf 6865 Define the infimum of class  A. It is meaningful when 
R is a relation that strictly orders 
B and when the infimum exists. For example,  R could be 'less than',  B could be the set of real numbers, and  A could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.)
 |- inf
 ( A ,  B ,  R )  =  sup ( A ,  B ,  `' R )
 
Theoremsupeq1 6866 Equality theorem for supremum. (Contributed by NM, 22-May-1999.)
 |-  ( B  =  C  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R )
 )
 
Theoremsupeq1d 6867 Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R ) )
 
Theoremsupeq1i 6868 Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  B  =  C   =>    |-  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R )
 
Theoremsupeq2 6869 Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( B  =  C  ->  sup ( A ,  B ,  R )  =  sup ( A ,  C ,  R )
 )
 
Theoremsupeq3 6870 Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.)
 |-  ( R  =  S  ->  sup ( A ,  B ,  R )  =  sup ( A ,  B ,  S )
 )
 
Theoremsupeq123d 6871 Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.)
 |-  ( ph  ->  A  =  D )   &    |-  ( ph  ->  B  =  E )   &    |-  ( ph  ->  C  =  F )   =>    |-  ( ph  ->  sup ( A ,  B ,  C )  =  sup ( D ,  E ,  F ) )
 
Theoremnfsup 6872 Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  F/_ x R   =>    |-  F/_ x sup ( A ,  B ,  R )
 
Theoremsupmoti 6873* Any class  B has at most one supremum in  A (where  R is interpreted as 'less than'). The hypothesis is satisfied by real numbers (see lttri3 7837) or other orders which correspond to tight apartnesses. (Contributed by Jim Kingdon, 23-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   =>    |-  ( ph  ->  E* x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
 
Theoremsupeuti 6874* A supremum is unique. Similar to Theorem I.26 of [Apostol] p. 24 (but for suprema in general). (Contributed by Jim Kingdon, 23-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   =>    |-  ( ph  ->  E! x  e.  A  (
 A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
 
Theoremsupval2ti 6875* Alternate expression for the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  =  (
 iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) ) )
 
Theoremeqsupti 6876* Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   =>    |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
 y R C  ->  E. z  e.  B  y R z ) ) 
 ->  sup ( B ,  A ,  R )  =  C ) )
 
Theoremeqsuptid 6877* Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 24-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ( ph  /\  y  e.  B ) 
 ->  -.  C R y )   &    |-  ( ( ph  /\  ( y  e.  A  /\  y R C ) )  ->  E. z  e.  B  y R z )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  =  C )
 
Theoremsupclti 6878* A supremum belongs to its base class (closure law). See also supubti 6879 and suplubti 6880. (Contributed by Jim Kingdon, 24-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  e.  A )
 
Theoremsupubti 6879* A supremum is an upper bound. See also supclti 6878 and suplubti 6880.

This proof demonstrates how to expand an iota-based definition (df-iota 5083) using riotacl2 5736.

(Contributed by Jim Kingdon, 24-Nov-2021.)

 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   =>    |-  ( ph  ->  ( C  e.  B  ->  -. 
 sup ( B ,  A ,  R ) R C ) )
 
Theoremsuplubti 6880* A supremum is the least upper bound. See also supclti 6878 and supubti 6879. (Contributed by Jim Kingdon, 24-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   =>    |-  ( ph  ->  ( ( C  e.  A  /\  C R sup ( B ,  A ,  R ) )  ->  E. z  e.  B  C R z ) )
 
Theoremsuplub2ti 6881* Bidirectional form of suplubti 6880. (Contributed by Jim Kingdon, 17-Jan-2022.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   &    |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  B  C_  A )   =>    |-  ( ( ph  /\  C  e.  A )  ->  ( C R sup ( B ,  A ,  R ) 
 <-> 
 E. z  e.  B  C R z ) )
 
Theoremsupelti 6882* Supremum membership in a set. (Contributed by Jim Kingdon, 16-Jan-2022.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  E. x  e.  C  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   &    |-  ( ph  ->  C  C_  A )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  e.  C )
 
Theoremsup00 6883 The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
 |- 
 sup ( B ,  (/)
 ,  R )  =  (/)
 
Theoremsupmaxti 6884* The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jim Kingdon, 24-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  C  e.  B )   &    |-  (
 ( ph  /\  y  e.  B )  ->  -.  C R y )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  =  C )
 
Theoremsupsnti 6885* The supremum of a singleton. (Contributed by Jim Kingdon, 26-Nov-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   &    |-  ( ph  ->  B  e.  A )   =>    |-  ( ph  ->  sup ( { B } ,  A ,  R )  =  B )
 
Theoremisotilem 6886* Lemma for isoti 6887. (Contributed by Jim Kingdon, 26-Nov-2021.)
 |-  ( F  Isom  R ,  S  ( A ,  B )  ->  ( A. x  e.  B  A. y  e.  B  ( x  =  y  <->  ( -.  x S y  /\  -.  y S x ) )  ->  A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) ) )
 
Theoremisoti 6887* An isomorphism preserves tightness. (Contributed by Jim Kingdon, 26-Nov-2021.)
 |-  ( F  Isom  R ,  S  ( A ,  B )  ->  ( A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) )  <->  A. u  e.  B  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) ) )
 
Theoremsupisolem 6888* Lemma for supisoti 6890. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )   &    |-  ( ph  ->  C 
 C_  A )   =>    |-  ( ( ph  /\  D  e.  A ) 
 ->  ( ( A. y  e.  C  -.  D R y  /\  A. y  e.  A  ( y R D  ->  E. z  e.  C  y R z ) )  <->  ( A. w  e.  ( F " C )  -.  ( F `  D ) S w 
 /\  A. w  e.  B  ( w S ( F `
  D )  ->  E. v  e.  ( F " C ) w S v ) ) ) )
 
Theoremsupisoex 6889* Lemma for supisoti 6890. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )   &    |-  ( ph  ->  C 
 C_  A )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )   =>    |-  ( ph  ->  E. u  e.  B  ( A. w  e.  ( F " C )  -.  u S w 
 /\  A. w  e.  B  ( w S u  ->  E. v  e.  ( F " C ) w S v ) ) )
 
Theoremsupisoti 6890* Image of a supremum under an isomorphism. (Contributed by Jim Kingdon, 26-Nov-2021.)
 |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )   &    |-  ( ph  ->  C 
 C_  A )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )   &    |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A ) )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   =>    |-  ( ph  ->  sup ( ( F " C ) ,  B ,  S )  =  ( F ` 
 sup ( C ,  A ,  R )
 ) )
 
Theoreminfeq1 6891 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( B  =  C  -> inf ( B ,  A ,  R )  = inf ( C ,  A ,  R ) )
 
Theoreminfeq1d 6892 Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  -> inf ( B ,  A ,  R )  = inf ( C ,  A ,  R ) )
 
Theoreminfeq1i 6893 Equality inference for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  B  =  C   =>    |- inf ( B ,  A ,  R )  = inf ( C ,  A ,  R )
 
Theoreminfeq2 6894 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( B  =  C  -> inf ( A ,  B ,  R )  = inf ( A ,  C ,  R ) )
 
Theoreminfeq3 6895 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( R  =  S  -> inf ( A ,  B ,  R )  = inf ( A ,  B ,  S ) )
 
Theoreminfeq123d 6896 Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( ph  ->  A  =  D )   &    |-  ( ph  ->  B  =  E )   &    |-  ( ph  ->  C  =  F )   =>    |-  ( ph  -> inf ( A ,  B ,  C )  = inf ( D ,  E ,  F ) )
 
Theoremnfinf 6897 Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  F/_ x R   =>    |-  F/_ xinf ( A ,  B ,  R )
 
Theoremcnvinfex 6898* Two ways of expressing existence of an infimum (one in terms of converse). (Contributed by Jim Kingdon, 17-Dec-2021.)
 |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  ->  E. x  e.  A  (
 A. y  e.  B  -.  x `' R y 
 /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )
 
Theoremcnvti 6899* If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   =>    |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u `' R v  /\  -.  v `' R u ) ) )
 
Theoremeqinfti 6900* Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
 |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )   =>    |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  y R C  /\  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R y ) )  -> inf ( B ,  A ,  R )  =  C )
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13239
  Copyright terms: Public domain < Previous  Next >