HomeHome Intuitionistic Logic Explorer
Theorem List (p. 76 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7501-7600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcaucvgprprlemupu 7501* Lemma for caucvgprpr 7513. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ( ph  /\  s  <Q  t  /\  s  e.  ( 2nd `  L ) )  ->  t  e.  ( 2nd `  L ) )
 
Theoremcaucvgprprlemrnd 7502* Lemma for caucvgprpr 7513. The putative limit is rounded. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  ( A. s  e.  Q.  ( s  e.  ( 1st `  L )  <->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) ) 
 /\  A. t  e.  Q.  ( t  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) ) )
 
Theoremcaucvgprprlemdisj 7503* Lemma for caucvgprpr 7513. The putative limit is disjoint. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprprlemloc 7504* Lemma for caucvgprpr 7513. The putative limit is located. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  A. s  e.  Q.  A. t  e. 
 Q.  ( s  <Q  t 
 ->  ( s  e.  ( 1st `  L )  \/  t  e.  ( 2nd `  L ) ) ) )
 
Theoremcaucvgprprlemcl 7505* Lemma for caucvgprpr 7513. The putative limit is a positive real. (Contributed by Jim Kingdon, 21-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  L  e.  P. )
 
Theoremcaucvgprprlemclphr 7506* Lemma for caucvgprpr 7513. The putative limit is a positive real. Like caucvgprprlemcl 7505 but without a distinct variable constraint between  ph and  r. (Contributed by Jim Kingdon, 19-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  L  e.  P. )
 
Theoremcaucvgprprlemexbt 7507* Lemma for caucvgprpr 7513. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 16-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  T  e.  P. )   &    |-  ( ph  ->  ( L  +P.  <. { p  |  p  <Q  Q } ,  {
 q  |  Q  <Q  q } >. )  <P  T )   =>    |-  ( ph  ->  E. b  e.  N.  ( ( ( F `  b ) 
 +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  T )
 
Theoremcaucvgprprlemexb 7508* Lemma for caucvgprpr 7513. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 15-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  R  e.  N. )   =>    |-  ( ph  ->  ( ( ( L  +P.  Q )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. R ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. R ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( ( F `  R )  +P.  Q )  ->  E. b  e.  N.  ( ( ( F `
  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 +P.  ( Q  +P.  <. { p  |  p  <Q  ( *Q `  [ <. R ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. R ,  1o >. ]  ~Q  )  <Q  q } >. ) )  <P  ( ( F `  R )  +P.  Q ) ) )
 
Theoremcaucvgprprlemaddq 7509* Lemma for caucvgprpr 7513. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 5-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  X  e.  P. )   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  E. r  e.  N.  ( X  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( ( F `  r
 )  +P.  Q )
 )   =>    |-  ( ph  ->  X  <P  ( L  +P.  Q ) )
 
Theoremcaucvgprprlem1 7510* Lemma for caucvgprpr 7513. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  J 
 <N  K )   &    |-  ( ph  ->  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )   =>    |-  ( ph  ->  ( F `  K )  <P  ( L  +P.  Q ) )
 
Theoremcaucvgprprlem2 7511* Lemma for caucvgprpr 7513. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  J 
 <N  K )   &    |-  ( ph  ->  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )   =>    |-  ( ph  ->  L  <P  ( ( F `  K )  +P.  Q ) )
 
Theoremcaucvgprprlemlim 7512* Lemma for caucvgprpr 7513. The putative limit is a limit. (Contributed by Jim Kingdon, 21-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  A. x  e.  P.  E. j  e. 
 N.  A. k  e.  N.  ( j  <N  k  ->  ( ( F `  k )  <P  ( L 
 +P.  x )  /\  L  <P  ( ( F `
  k )  +P.  x ) ) ) )
 
Theoremcaucvgprpr 7513* A Cauchy sequence of positive reals with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within  1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a given value  A, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This is similar to caucvgpr 7483 except that values of the sequence are positive reals rather than positive fractions. Reading that proof first (or cauappcvgpr 7463) might help in understanding this one, as they are slightly simpler but similarly structured. (Contributed by Jim Kingdon, 14-Nov-2020.)

 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   =>    |-  ( ph  ->  E. y  e.  P.  A. x  e. 
 P.  E. j  e.  N.  A. k  e.  N.  (
 j  <N  k  ->  (
 ( F `  k
 )  <P  ( y  +P.  x )  /\  y  <P  ( ( F `  k
 )  +P.  x )
 ) ) )
 
Theoremsuplocexprlemell 7514* Lemma for suplocexpr 7526. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( B  e.  U. ( 1st " A )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
 
Theoremsuplocexprlem2b 7515 Lemma for suplocexpr 7526. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( A  C_  P.  ->  ( 2nd `  B )  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
 )
 
Theoremsuplocexprlemss 7516* Lemma for suplocexpr 7526. 
A is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  A  C_  P. )
 
Theoremsuplocexprlemml 7517* Lemma for suplocexpr 7526. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  E. s  e.  Q.  s  e.  U. ( 1st " A ) )
 
Theoremsuplocexprlemrl 7518* Lemma for suplocexpr 7526. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  A. q  e. 
 Q.  ( q  e. 
 U. ( 1st " A ) 
 <-> 
 E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) ) )
 
Theoremsuplocexprlemmu 7519* Lemma for suplocexpr 7526. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 2nd `  B ) )
 
Theoremsuplocexprlemru 7520* Lemma for suplocexpr 7526. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. r  e. 
 Q.  ( r  e.  ( 2nd `  B ) 
 <-> 
 E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
 
Theoremsuplocexprlemdisj 7521* Lemma for suplocexpr 7526. The putative supremum is disjoint. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. q  e. 
 Q.  -.  ( q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) ) )
 
Theoremsuplocexprlemloc 7522* Lemma for suplocexpr 7526. The putative supremum is located. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. q  e. 
 Q.  A. r  e.  Q.  ( q  <Q  r  ->  ( q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) )
 
Theoremsuplocexprlemex 7523* Lemma for suplocexpr 7526. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  B  e.  P. )
 
Theoremsuplocexprlemub 7524* Lemma for suplocexpr 7526. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. y  e.  A  -.  B  <P  y )
 
Theoremsuplocexprlemlub 7525* Lemma for suplocexpr 7526. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  ( y  <P  B  ->  E. z  e.  A  y  <P  z ) )
 
Theoremsuplocexpr 7526* An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y 
 /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
 
Definitiondf-enr 7527* Define equivalence relation for signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.)
 |- 
 ~R  =  { <. x ,  y >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X. 
 P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  +P.  u )  =  ( w 
 +P.  v ) ) ) }
 
Definitiondf-nr 7528 Define class of signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.)
 |- 
 R.  =  ( ( P.  X.  P. ) /.  ~R  )
 
Definitiondf-plr 7529* Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.)
 |- 
 +R  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] 
 ~R  /\  y  =  [ <. u ,  f >. ]  ~R  )  /\  z  =  [ <. ( w 
 +P.  u ) ,  ( v  +P.  f
 ) >. ]  ~R  )
 ) }
 
Definitiondf-mr 7530* Define multiplication on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.)
 |- 
 .R  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] 
 ~R  /\  y  =  [ <. u ,  f >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u ) 
 +P.  ( v  .P.  f ) ) ,  ( ( w  .P.  f )  +P.  ( v 
 .P.  u ) )
 >. ]  ~R  ) ) }
 
Definitiondf-ltr 7531* Define ordering relation on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.4 of [Gleason] p. 127. (Contributed by NM, 14-Feb-1996.)
 |- 
 <R  =  { <. x ,  y >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ] 
 ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u ) 
 <P  ( w  +P.  v
 ) ) ) }
 
Definitiondf-0r 7532 Define signed real constant 0. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.)
 |- 
 0R  =  [ <. 1P ,  1P >. ]  ~R
 
Definitiondf-1r 7533 Define signed real constant 1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.)
 |- 
 1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
 
Definitiondf-m1r 7534 Define signed real constant -1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 9-Aug-1995.)
 |- 
 -1R  =  [ <. 1P ,  ( 1P  +P.  1P ) >. ]  ~R
 
Theoremenrbreq 7535 Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( <. A ,  B >.  ~R  <. C ,  D >.  <-> 
 ( A  +P.  D )  =  ( B  +P.  C ) ) )
 
Theoremenrer 7536 The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
 |- 
 ~R  Er  ( P.  X. 
 P. )
 
Theoremenreceq 7537 Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( [ <. A ,  B >. ]  ~R  =  [ <. C ,  D >. ] 
 ~R 
 <->  ( A  +P.  D )  =  ( B  +P.  C ) ) )
 
Theoremenrex 7538 The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.)
 |- 
 ~R  e.  _V
 
Theoremltrelsr 7539 Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.)
 |- 
 <R  C_  ( R.  X.  R. )
 
Theoremaddcmpblnr 7540 Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.)
 |-  ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
 )  /\  ( ( F  e.  P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) ) 
 ->  ( ( ( A 
 +P.  D )  =  ( B  +P.  C ) 
 /\  ( F  +P.  S )  =  ( G 
 +P.  R ) )  ->  <. ( A  +P.  F ) ,  ( B  +P.  G ) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S ) >. ) )
 
Theoremmulcmpblnrlemg 7541 Lemma used in lemma showing compatibility of multiplication. (Contributed by Jim Kingdon, 1-Jan-2020.)
 |-  ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
 )  /\  ( ( F  e.  P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) ) 
 ->  ( ( ( A 
 +P.  D )  =  ( B  +P.  C ) 
 /\  ( F  +P.  S )  =  ( G 
 +P.  R ) )  ->  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  F )  +P.  ( B  .P.  G ) )  +P.  (
 ( C  .P.  S )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D 
 .P.  F )  +P.  (
 ( ( A  .P.  G )  +P.  ( B 
 .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D 
 .P.  S ) ) ) ) ) )
 
Theoremmulcmpblnr 7542 Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.)
 |-  ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
 )  /\  ( ( F  e.  P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) ) 
 ->  ( ( ( A 
 +P.  D )  =  ( B  +P.  C ) 
 /\  ( F  +P.  S )  =  ( G 
 +P.  R ) )  ->  <. ( ( A  .P.  F )  +P.  ( B 
 .P.  G ) ) ,  ( ( A  .P.  G )  +P.  ( B 
 .P.  F ) ) >.  ~R 
 <. ( ( C  .P.  R )  +P.  ( D 
 .P.  S ) ) ,  ( ( C  .P.  S )  +P.  ( D 
 .P.  R ) ) >. ) )
 
Theoremprsrlem1 7543* Decomposing signed reals into positive reals. Lemma for addsrpr 7546 and mulsrpr 7547. (Contributed by Jim Kingdon, 30-Dec-2019.)
 |-  ( ( ( A  e.  ( ( P. 
 X.  P. ) /.  ~R  )  /\  B  e.  (
 ( P.  X.  P. ) /.  ~R  ) ) 
 /\  ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ] 
 ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( (
 ( ( w  e. 
 P.  /\  v  e.  P. )  /\  ( s  e.  P.  /\  f  e.  P. ) )  /\  ( ( u  e. 
 P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. ) ) ) 
 /\  ( ( w 
 +P.  f )  =  ( v  +P.  s
 )  /\  ( u  +P.  h )  =  ( t  +P.  g ) ) ) )
 
Theoremaddsrmo 7544* There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
 |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  ->  E* z E. w E. v E. u E. t
 ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w 
 +P.  u ) ,  ( v  +P.  t
 ) >. ]  ~R  )
 )
 
Theoremmulsrmo 7545* There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
 |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  ->  E* z E. w E. v E. u E. t
 ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u ) 
 +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  ( v 
 .P.  u ) )
 >. ]  ~R  ) )
 
Theoremaddsrpr 7546 Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( [ <. A ,  B >. ]  ~R  +R  [ <. C ,  D >. ] 
 ~R  )  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )
 
Theoremmulsrpr 7547 Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( [ <. A ,  B >. ]  ~R  .R  [ <. C ,  D >. ] 
 ~R  )  =  [ <. ( ( A  .P.  C )  +P.  ( B 
 .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B 
 .P.  C ) ) >. ] 
 ~R  )
 
Theoremltsrprg 7548 Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( [ <. A ,  B >. ]  ~R  <R  [ <. C ,  D >. ]  ~R  <->  ( A  +P.  D )  <P  ( B  +P.  C ) ) )
 
Theoremgt0srpr 7549 Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.)
 |-  ( 0R  <R  [ <. A ,  B >. ]  ~R  <->  B  <P  A )
 
Theorem0nsr 7550 The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.)
 |- 
 -.  (/)  e.  R.
 
Theorem0r 7551 The constant  0R is a signed real. (Contributed by NM, 9-Aug-1995.)
 |- 
 0R  e.  R.
 
Theorem1sr 7552 The constant  1R is a signed real. (Contributed by NM, 9-Aug-1995.)
 |- 
 1R  e.  R.
 
Theoremm1r 7553 The constant  -1R is a signed real. (Contributed by NM, 9-Aug-1995.)
 |- 
 -1R  e.  R.
 
Theoremaddclsr 7554 Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( A  +R  B )  e.  R. )
 
Theoremmulclsr 7555 Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( A  .R  B )  e.  R. )
 
Theoremaddcomsrg 7556 Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( A  +R  B )  =  ( B  +R  A ) )
 
Theoremaddasssrg 7557 Addition of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( ( A  +R  B )  +R  C )  =  ( A  +R  ( B  +R  C ) ) )
 
Theoremmulcomsrg 7558 Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( A  .R  B )  =  ( B  .R  A ) )
 
Theoremmulasssrg 7559 Multiplication of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( ( A  .R  B )  .R  C )  =  ( A  .R  ( B  .R  C ) ) )
 
Theoremdistrsrg 7560 Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  .R  ( B  +R  C ) )  =  ( ( A 
 .R  B )  +R  ( A  .R  C ) ) )
 
Theoremm1p1sr 7561 Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.)
 |-  ( -1R  +R  1R )  =  0R
 
Theoremm1m1sr 7562 Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.)
 |-  ( -1R  .R  -1R )  =  1R
 
Theoremlttrsr 7563* Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.)
 |-  ( ( f  e. 
 R.  /\  g  e.  R. 
 /\  h  e.  R. )  ->  ( ( f 
 <R  g  /\  g  <R  h )  ->  f  <R  h ) )
 
Theoremltposr 7564 Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.)
 |- 
 <R  Po  R.
 
Theoremltsosr 7565 Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.)
 |- 
 <R  Or  R.
 
Theorem0lt1sr 7566 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.)
 |- 
 0R  <R  1R
 
Theorem1ne0sr 7567 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.)
 |- 
 -.  1R  =  0R
 
Theorem0idsr 7568 The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.)
 |-  ( A  e.  R.  ->  ( A  +R  0R )  =  A )
 
Theorem1idsr 7569 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.)
 |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )
 
Theorem00sr 7570 A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.)
 |-  ( A  e.  R.  ->  ( A  .R  0R )  =  0R )
 
Theoremltasrg 7571 Ordering property of addition. (Contributed by NM, 10-May-1996.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  <R  B  <->  ( C  +R  A )  <R  ( C  +R  B ) ) )
 
Theorempn0sr 7572 A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.)
 |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )
 
Theoremnegexsr 7573* Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.)
 |-  ( A  e.  R.  ->  E. x  e.  R.  ( A  +R  x )  =  0R )
 
Theoremrecexgt0sr 7574* The reciprocal of a positive signed real exists and is positive. (Contributed by Jim Kingdon, 6-Feb-2020.)
 |-  ( 0R  <R  A  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( A  .R  x )  =  1R ) )
 
Theoremrecexsrlem 7575* The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.)
 |-  ( 0R  <R  A  ->  E. x  e.  R.  ( A  .R  x )  =  1R )
 
Theoremaddgt0sr 7576 The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.)
 |-  ( ( 0R  <R  A 
 /\  0R  <R  B ) 
 ->  0R  <R  ( A  +R  B ) )
 
Theoremltadd1sr 7577 Adding one to a signed real yields a larger signed real. (Contributed by Jim Kingdon, 7-Jul-2021.)
 |-  ( A  e.  R.  ->  A  <R  ( A  +R  1R ) )
 
Theoremltm1sr 7578 Adding minus one to a signed real yields a smaller signed real. (Contributed by Jim Kingdon, 21-Jan-2024.)
 |-  ( A  e.  R.  ->  ( A  +R  -1R )  <R  A )
 
Theoremmulgt0sr 7579 The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.)
 |-  ( ( 0R  <R  A 
 /\  0R  <R  B ) 
 ->  0R  <R  ( A  .R  B ) )
 
Theoremaptisr 7580 Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\ 
 -.  ( A  <R  B  \/  B  <R  A ) )  ->  A  =  B )
 
Theoremmulextsr1lem 7581 Lemma for mulextsr1 7582. (Contributed by Jim Kingdon, 17-Feb-2020.)
 |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. ) )  ->  ( ( ( ( X  .P.  U ) 
 +P.  ( Y  .P.  V ) )  +P.  (
 ( Z  .P.  V )  +P.  ( W  .P.  U ) ) )  <P  ( ( ( X  .P.  V )  +P.  ( Y 
 .P.  U ) )  +P.  ( ( Z  .P.  U )  +P.  ( W 
 .P.  V ) ) ) 
 ->  ( ( X  +P.  W )  <P  ( Y  +P.  Z )  \/  ( Z  +P.  Y )  <P  ( W  +P.  X ) ) ) )
 
Theoremmulextsr1 7582 Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( ( A  .R  C )  <R  ( B 
 .R  C )  ->  ( A  <R  B  \/  B  <R  A ) ) )
 
Theoremarchsr 7583* For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression  [ <. ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  },  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R is the embedding of the positive integer  x into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
 |-  ( A  e.  R.  ->  E. x  e.  N.  A  <R  [ <. ( <. { l  |  l  <Q  [
 <. x ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
 
Theoremsrpospr 7584* Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.)
 |-  ( ( A  e.  R. 
 /\  0R  <R  A ) 
 ->  E! x  e.  P.  [
 <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
 
Theoremprsrcl 7585 Mapping from a positive real to a signed real. (Contributed by Jim Kingdon, 25-Jun-2021.)
 |-  ( A  e.  P.  ->  [ <. ( A  +P.  1P ) ,  1P >. ] 
 ~R  e.  R. )
 
Theoremprsrpos 7586 Mapping from a positive real to a signed real yields a result greater than zero. (Contributed by Jim Kingdon, 25-Jun-2021.)
 |-  ( A  e.  P.  ->  0R  <R  [ <. ( A 
 +P.  1P ) ,  1P >. ]  ~R  )
 
Theoremprsradd 7587 Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  [ <. ( ( A  +P.  B ) 
 +P.  1P ) ,  1P >. ]  ~R  =  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R 
 [ <. ( B  +P.  1P ) ,  1P >. ] 
 ~R  ) )
 
Theoremprsrlt 7588 Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  <P  B  <->  [ <. ( A  +P.  1P ) ,  1P >. ] 
 ~R  <R  [ <. ( B 
 +P.  1P ) ,  1P >. ]  ~R  ) )
 
Theoremprsrriota 7589* Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
 |-  ( ( A  e.  R. 
 /\  0R  <R  A ) 
 ->  [ <. ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  A )
 
Theoremcaucvgsrlemcl 7590* Lemma for caucvgsr 7603. Terms of the sequence from caucvgsrlemgt1 7596 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   =>    |-  ( ( ph  /\  A  e.  N. )  ->  ( iota_
 y  e.  P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ] 
 ~R  )  e.  P. )
 
Theoremcaucvgsrlemasr 7591* Lemma for caucvgsr 7603. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
 |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `
  m ) )   =>    |-  ( ph  ->  A  e.  R. )
 
Theoremcaucvgsrlemfv 7592* Lemma for caucvgsr 7603. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   &    |-  G  =  ( x  e.  N.  |->  (
 iota_ y  e.  P.  ( F `  x )  =  [ <. ( y 
 +P.  1P ) ,  1P >. ]  ~R  ) )   =>    |-  ( ( ph  /\  A  e.  N. )  ->  [ <. ( ( G `
  A )  +P.  1P ) ,  1P >. ] 
 ~R  =  ( F `
  A ) )
 
Theoremcaucvgsrlemf 7593* Lemma for caucvgsr 7603. Defining the sequence in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   &    |-  G  =  ( x  e.  N.  |->  (
 iota_ y  e.  P.  ( F `  x )  =  [ <. ( y 
 +P.  1P ) ,  1P >. ]  ~R  ) )   =>    |-  ( ph  ->  G : N. --> P. )
 
Theoremcaucvgsrlemcau 7594* Lemma for caucvgsr 7603. Defining the Cauchy condition in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   &    |-  G  =  ( x  e.  N.  |->  (
 iota_ y  e.  P.  ( F `  x )  =  [ <. ( y 
 +P.  1P ) ,  1P >. ]  ~R  ) )   =>    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( G `  n )  <P  ( ( G `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( G `  k )  <P  ( ( G `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )
 
Theoremcaucvgsrlembound 7595* Lemma for caucvgsr 7603. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   &    |-  G  =  ( x  e.  N.  |->  (
 iota_ y  e.  P.  ( F `  x )  =  [ <. ( y 
 +P.  1P ) ,  1P >. ]  ~R  ) )   =>    |-  ( ph  ->  A. m  e.  N.  1P  <P  ( G `  m ) )
 
Theoremcaucvgsrlemgt1 7596* Lemma for caucvgsr 7603. A Cauchy sequence whose terms are greater than one converges. (Contributed by Jim Kingdon, 22-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   =>    |-  ( ph  ->  E. y  e.  R.  A. x  e. 
 R.  ( 0R  <R  x 
 ->  E. j  e.  N.  A. i  e.  N.  (
 j  <N  i  ->  (
 ( F `  i
 )  <R  ( y  +R  x )  /\  y  <R  ( ( F `  i
 )  +R  x )
 ) ) ) )
 
Theoremcaucvgsrlemoffval 7597* Lemma for caucvgsr 7603. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ( ph  /\  J  e.  N. )  ->  ( ( G `  J )  +R  A )  =  ( ( F `
  J )  +R  1R ) )
 
Theoremcaucvgsrlemofff 7598* Lemma for caucvgsr 7603. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ph  ->  G : N. --> R. )
 
Theoremcaucvgsrlemoffcau 7599* Lemma for caucvgsr 7603. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( G `  n )  <R  ( ( G `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  ( ( G `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )
 
Theoremcaucvgsrlemoffgt1 7600* Lemma for caucvgsr 7603. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( G `  m ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13239
  Copyright terms: Public domain < Previous  Next >