HomeHome Intuitionistic Logic Explorer
Theorem List (p. 95 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9401-9500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremelnn1uz2 9401 A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
 |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 ) ) )
 
Theoremuz2mulcl 9402 Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.)
 |-  ( ( M  e.  ( ZZ>= `  2 )  /\  N  e.  ( ZZ>= `  2 ) )  ->  ( M  x.  N )  e.  ( ZZ>= `  2 ) )
 
Theoremindstr2 9403* Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
 |-  ( x  =  1 
 ->  ( ph  <->  ch ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ch   &    |-  ( x  e.  ( ZZ>= `  2 )  ->  ( A. y  e.  NN  (
 y  <  x  ->  ps )  ->  ph ) )   =>    |-  ( x  e.  NN  -> 
 ph )
 
Theoremeluzdc 9404 Membership of an integer in an upper set of integers is decidable. (Contributed by Jim Kingdon, 18-Apr-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  e.  ( ZZ>= `  M ) )
 
Theoremublbneg 9405* The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9390. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( E. x  e. 
 RR  A. y  e.  A  y  <_  x  ->  E. x  e.  RR  A. y  e. 
 { z  e.  RR  |  -u z  e.  A } x  <_  y )
 
Theoremeqreznegel 9406* Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( A  C_  ZZ  ->  { z  e.  RR  |  -u z  e.  A }  =  { z  e.  ZZ  |  -u z  e.  A } )
 
Theoremnegm 9407* The image under negation of an inhabited set of reals is inhabited. (Contributed by Jim Kingdon, 10-Apr-2020.)
 |-  ( ( A  C_  RR  /\  E. x  x  e.  A )  ->  E. y  y  e.  { z  e.  RR  |  -u z  e.  A }
 )
 
Theoremlbzbi 9408* If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( A  C_  RR  ->  ( E. x  e. 
 RR  A. y  e.  A  x  <_  y  <->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
 
Theoremnn01to3 9409 A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
 |-  ( ( N  e.  NN0  /\  1  <_  N  /\  N  <_  3 )  ->  ( N  =  1  \/  N  =  2  \/  N  =  3 ) )
 
Theoremnn0ge2m1nnALT 9410 Alternate proof of nn0ge2m1nn 9037: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. This version is proved using eluz2 9332, a theorem for upper sets of integers, which are defined later than the positive and nonnegative integers. This proof is, however, much shorter than the proof of nn0ge2m1nn 9037. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( ( N  e.  NN0  /\  2  <_  N ) 
 ->  ( N  -  1
 )  e.  NN )
 
4.4.12  Rational numbers (as a subset of complex numbers)
 
Syntaxcq 9411 Extend class notation to include the class of rationals.
 class  QQ
 
Definitiondf-q 9412 Define the set of rational numbers. Based on definition of rationals in [Apostol] p. 22. See elq 9414 for the relation "is rational." (Contributed by NM, 8-Jan-2002.)
 |- 
 QQ  =  (  /  " ( ZZ  X.  NN ) )
 
Theoremdivfnzn 9413 Division restricted to  ZZ  X.  NN is a function. Given excluded middle, it would be easy to prove this for  CC 
X.  ( CC  \  { 0 } ). The key difference is that an element of  NN is apart from zero, whereas being an element of 
CC  \  { 0 } implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
 |-  (  /  |`  ( ZZ 
 X.  NN ) )  Fn  ( ZZ  X.  NN )
 
Theoremelq 9414* Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.)
 |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
 
Theoremqmulz 9415* If  A is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.)
 |-  ( A  e.  QQ  ->  E. x  e.  NN  ( A  x.  x )  e.  ZZ )
 
Theoremznq 9416 The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  B )  e.  QQ )
 
Theoremqre 9417 A rational number is a real number. (Contributed by NM, 14-Nov-2002.)
 |-  ( A  e.  QQ  ->  A  e.  RR )
 
Theoremzq 9418 An integer is a rational number. (Contributed by NM, 9-Jan-2002.)
 |-  ( A  e.  ZZ  ->  A  e.  QQ )
 
Theoremzssq 9419 The integers are a subset of the rationals. (Contributed by NM, 9-Jan-2002.)
 |- 
 ZZ  C_  QQ
 
Theoremnn0ssq 9420 The nonnegative integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.)
 |- 
 NN0  C_  QQ
 
Theoremnnssq 9421 The positive integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.)
 |- 
 NN  C_  QQ
 
Theoremqssre 9422 The rationals are a subset of the reals. (Contributed by NM, 9-Jan-2002.)
 |- 
 QQ  C_  RR
 
Theoremqsscn 9423 The rationals are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
 |- 
 QQ  C_  CC
 
Theoremqex 9424 The set of rational numbers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |- 
 QQ  e.  _V
 
Theoremnnq 9425 A positive integer is rational. (Contributed by NM, 17-Nov-2004.)
 |-  ( A  e.  NN  ->  A  e.  QQ )
 
Theoremqcn 9426 A rational number is a complex number. (Contributed by NM, 2-Aug-2004.)
 |-  ( A  e.  QQ  ->  A  e.  CC )
 
Theoremqaddcl 9427 Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  +  B )  e.  QQ )
 
Theoremqnegcl 9428 Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.)
 |-  ( A  e.  QQ  -> 
 -u A  e.  QQ )
 
Theoremqmulcl 9429 Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  x.  B )  e.  QQ )
 
Theoremqsubcl 9430 Closure of subtraction of rationals. (Contributed by NM, 2-Aug-2004.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  -  B )  e.  QQ )
 
Theoremqapne 9431 Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 20-Mar-2020.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A #  B  <->  A  =/=  B ) )
 
Theoremqltlen 9432 Rational 'Less than' expressed in terms of 'less than or equal to'. Also see ltleap 8394 which is a similar result for real numbers. (Contributed by Jim Kingdon, 11-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  <-> 
 ( A  <_  B  /\  B  =/=  A ) ) )
 
Theoremqlttri2 9433 Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 9-Nov-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  =/=  B  <-> 
 ( A  <  B  \/  B  <  A ) ) )
 
Theoremqreccl 9434 Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.)
 |-  ( ( A  e.  QQ  /\  A  =/=  0
 )  ->  ( 1  /  A )  e.  QQ )
 
Theoremqdivcl 9435 Closure of division of rationals. (Contributed by NM, 3-Aug-2004.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 ) 
 ->  ( A  /  B )  e.  QQ )
 
Theoremqrevaddcl 9436 Reverse closure law for addition of rationals. (Contributed by NM, 2-Aug-2004.)
 |-  ( B  e.  QQ  ->  ( ( A  e.  CC  /\  ( A  +  B )  e.  QQ ) 
 <->  A  e.  QQ )
 )
 
Theoremnnrecq 9437 The reciprocal of a positive integer is rational. (Contributed by NM, 17-Nov-2004.)
 |-  ( A  e.  NN  ->  ( 1  /  A )  e.  QQ )
 
Theoremirradd 9438 The sum of an irrational number and a rational number is irrational. (Contributed by NM, 7-Nov-2008.)
 |-  ( ( A  e.  ( RR  \  QQ )  /\  B  e.  QQ )  ->  ( A  +  B )  e.  ( RR  \  QQ ) )
 
Theoremirrmul 9439 The product of a real which is not rational with a nonzero rational is not rational. Note that by "not rational" we mean the negation of "is rational" (whereas "irrational" is often defined to mean apart from any rational number - given excluded middle these two definitions would be equivalent). (Contributed by NM, 7-Nov-2008.)
 |-  ( ( A  e.  ( RR  \  QQ )  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  x.  B )  e.  ( RR  \  QQ ) )
 
4.4.13  Complex numbers as pairs of reals
 
Theoremcnref1o 9440* There is a natural one-to-one mapping from  ( RR  X.  RR ) to  CC, where we map  <. x ,  y
>. to  ( x  +  ( _i  x.  y ) ). In our construction of the complex numbers, this is in fact our definition of  CC (see df-c 7626), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.)
 |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  ( _i  x.  y
 ) ) )   =>    |-  F : ( RR  X.  RR ) -1-1-onto-> CC
 
4.5  Order sets
 
4.5.1  Positive reals (as a subset of complex numbers)
 
Syntaxcrp 9441 Extend class notation to include the class of positive reals.
 class  RR+
 
Definitiondf-rp 9442 Define the set of positive reals. Definition of positive numbers in [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
 |-  RR+  =  { x  e. 
 RR  |  0  < 
 x }
 
Theoremelrp 9443 Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.)
 |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  <  A ) )
 
Theoremelrpii 9444 Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.)
 |-  A  e.  RR   &    |-  0  <  A   =>    |-  A  e.  RR+
 
Theorem1rp 9445 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.)
 |-  1  e.  RR+
 
Theorem2rp 9446 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  2  e.  RR+
 
Theorem3rp 9447 3 is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  3  e.  RR+
 
Theoremrpre 9448 A positive real is a real. (Contributed by NM, 27-Oct-2007.)
 |-  ( A  e.  RR+  ->  A  e.  RR )
 
Theoremrpxr 9449 A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |-  ( A  e.  RR+  ->  A  e.  RR* )
 
Theoremrpcn 9450 A positive real is a complex number. (Contributed by NM, 11-Nov-2008.)
 |-  ( A  e.  RR+  ->  A  e.  CC )
 
Theoremnnrp 9451 A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.)
 |-  ( A  e.  NN  ->  A  e.  RR+ )
 
Theoremrpssre 9452 The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.)
 |-  RR+  C_  RR
 
Theoremrpgt0 9453 A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.)
 |-  ( A  e.  RR+  -> 
 0  <  A )
 
Theoremrpge0 9454 A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.)
 |-  ( A  e.  RR+  -> 
 0  <_  A )
 
Theoremrpregt0 9455 A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
 
Theoremrprege0 9456 A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <_  A )
 )
 
Theoremrpne0 9457 A positive real is nonzero. (Contributed by NM, 18-Jul-2008.)
 |-  ( A  e.  RR+  ->  A  =/=  0 )
 
Theoremrpap0 9458 A positive real is apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
 |-  ( A  e.  RR+  ->  A #  0 )
 
Theoremrprene0 9459 A positive real is a nonzero real number. (Contributed by NM, 11-Nov-2008.)
 |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  A  =/=  0 ) )
 
Theoremrpreap0 9460 A positive real is a real number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
 |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  A #  0 ) )
 
Theoremrpcnne0 9461 A positive real is a nonzero complex number. (Contributed by NM, 11-Nov-2008.)
 |-  ( A  e.  RR+  ->  ( A  e.  CC  /\  A  =/=  0 ) )
 
Theoremrpcnap0 9462 A positive real is a complex number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
 |-  ( A  e.  RR+  ->  ( A  e.  CC  /\  A #  0 ) )
 
Theoremralrp 9463 Quantification over positive reals. (Contributed by NM, 12-Feb-2008.)
 |-  ( A. x  e.  RR+  ph  <->  A. x  e.  RR  ( 0  <  x  -> 
 ph ) )
 
Theoremrexrp 9464 Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.)
 |-  ( E. x  e.  RR+  ph  <->  E. x  e.  RR  ( 0  <  x  /\  ph ) )
 
Theoremrpaddcl 9465 Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  +  B )  e.  RR+ )
 
Theoremrpmulcl 9466 Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  x.  B )  e.  RR+ )
 
Theoremrpdivcl 9467 Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  /  B )  e.  RR+ )
 
Theoremrpreccl 9468 Closure law for reciprocation of positive reals. (Contributed by Jeff Hankins, 23-Nov-2008.)
 |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR+ )
 
Theoremrphalfcl 9469 Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ( A  e.  RR+  ->  ( A  /  2
 )  e.  RR+ )
 
Theoremrpgecl 9470 A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  B  e.  RR+ )
 
Theoremrphalflt 9471 Half of a positive real is less than the original number. (Contributed by Mario Carneiro, 21-May-2014.)
 |-  ( A  e.  RR+  ->  ( A  /  2
 )  <  A )
 
Theoremrerpdivcl 9472 Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( A  /  B )  e.  RR )
 
Theoremge0p1rp 9473 A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( A  +  1 )  e.  RR+ )
 
Theoremrpnegap 9474 Either a real apart from zero or its negation is a positive real, but not both. (Contributed by Jim Kingdon, 23-Mar-2020.)
 |-  ( ( A  e.  RR  /\  A #  0 ) 
 ->  ( A  e.  RR+  \/_  -u A  e.  RR+ )
 )
 
Theoremnegelrp 9475 Elementhood of a negation in the positive real numbers. (Contributed by Thierry Arnoux, 19-Sep-2018.)
 |-  ( A  e.  RR  ->  ( -u A  e.  RR+  <->  A  <  0 ) )
 
Theoremnegelrpd 9476 The negation of a negative number is in the positive real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  0 )   =>    |-  ( ph  ->  -u A  e.  RR+ )
 
Theorem0nrp 9477 Zero is not a positive real. Axiom 9 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
 |- 
 -.  0  e.  RR+
 
Theoremltsubrp 9478 Subtracting a positive real from another number decreases it. (Contributed by FL, 27-Dec-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( A  -  B )  <  A )
 
Theoremltaddrp 9479 Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  A  <  ( A  +  B )
 )
 
Theoremdifrp 9480 Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <-> 
 ( B  -  A )  e.  RR+ ) )
 
Theoremelrpd 9481 Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <  A )   =>    |-  ( ph  ->  A  e.  RR+ )
 
Theoremnnrpd 9482 A positive integer is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN )   =>    |-  ( ph  ->  A  e.  RR+ )
 
Theoremrpred 9483 A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremrpxrd 9484 A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  A  e.  RR* )
 
Theoremrpcnd 9485 A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  A  e.  CC )
 
Theoremrpgt0d 9486 A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  0  <  A )
 
Theoremrpge0d 9487 A positive real is greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  0  <_  A )
 
Theoremrpne0d 9488 A positive real is nonzero. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  A  =/=  0 )
 
Theoremrpap0d 9489 A positive real is apart from zero. (Contributed by Jim Kingdon, 28-Jul-2021.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  A #  0 )
 
Theoremrpregt0d 9490 A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  e.  RR  /\  0  <  A ) )
 
Theoremrprege0d 9491 A positive real is real and greater or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  e.  RR  /\  0  <_  A ) )
 
Theoremrprene0d 9492 A positive real is a nonzero real number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  e.  RR  /\  A  =/=  0 ) )
 
Theoremrpcnne0d 9493 A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  e.  CC  /\  A  =/=  0 ) )
 
Theoremrpreccld 9494 Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  (
 1  /  A )  e.  RR+ )
 
Theoremrprecred 9495 Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  (
 1  /  A )  e.  RR )
 
Theoremrphalfcld 9496 Closure law for half of a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  /  2 )  e.  RR+ )
 
Theoremreclt1d 9497 The reciprocal of a positive number less than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  <  1  <->  1  <  (
 1  /  A )
 ) )
 
Theoremrecgt1d 9498 The reciprocal of a positive number greater than 1 is less than 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  (
 1  <  A  <->  ( 1  /  A )  <  1 ) )
 
Theoremrpaddcld 9499 Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  +  B )  e.  RR+ )
 
Theoremrpmulcld 9500 Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  x.  B )  e.  RR+ )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >