![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mnfnre | Unicode version |
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
mnfnre |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7159 |
. . . . 5
![]() ![]() ![]() ![]() | |
2 | 2pwuninelg 5932 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | df-mnf 7218 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() | |
5 | df-pnf 7217 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | pweqi 3394 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | eqtri 2102 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | eleq1i 2145 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 3, 8 | mtbir 629 |
. . 3
![]() ![]() ![]() ![]() ![]() |
10 | recn 7168 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | mto 621 |
. 2
![]() ![]() ![]() ![]() ![]() |
12 | 11 | nelir 2343 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-setind 4288 ax-cnex 7129 ax-resscn 7130 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-nel 2341 df-ral 2354 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-uni 3610 df-pnf 7217 df-mnf 7218 |
This theorem is referenced by: renemnf 7229 xrltnr 8931 nltmnf 8939 |
Copyright terms: Public domain | W3C validator |