![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mnfxr | Unicode version |
Description: Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
mnfxr |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mnf 7218 |
. . . . 5
![]() ![]() ![]() ![]() ![]() | |
2 | pnfex 7234 |
. . . . . 6
![]() ![]() ![]() ![]() | |
3 | 2 | pwex 3961 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | eqeltri 2152 |
. . . 4
![]() ![]() ![]() ![]() |
5 | 4 | prid2 3507 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | elun2 3141 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | ax-mp 7 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | df-xr 7219 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 7, 8 | eleqtrri 2155 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-un 4196 ax-cnex 7129 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-uni 3610 df-pnf 7217 df-mnf 7218 df-xr 7219 |
This theorem is referenced by: elxr 8928 xrltnr 8931 mnflt 8934 mnfltpnf 8936 nltmnf 8939 mnfle 8943 xrltnsym 8944 xrlttri3 8948 ngtmnft 8961 xrrebnd 8962 xrre2 8964 xrre3 8965 ge0gtmnf 8966 xnegcl 8975 xltnegi 8978 xrex 8986 elioc2 9035 elico2 9036 elicc2 9037 ioomax 9047 iccmax 9048 elioomnf 9067 unirnioo 9072 |
Copyright terms: Public domain | W3C validator |