![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > modqcld | Unicode version |
Description: Closure law for the modulo operation. (Contributed by Jim Kingdon, 16-Oct-2021.) |
Ref | Expression |
---|---|
modqcld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
modqcld.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
modqcld.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
modqcld |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modqcld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | modqcld.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | modqcld.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | modqcl 9478 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | syl3anc 1170 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-cnex 7199 ax-resscn 7200 ax-1cn 7201 ax-1re 7202 ax-icn 7203 ax-addcl 7204 ax-addrcl 7205 ax-mulcl 7206 ax-mulrcl 7207 ax-addcom 7208 ax-mulcom 7209 ax-addass 7210 ax-mulass 7211 ax-distr 7212 ax-i2m1 7213 ax-0lt1 7214 ax-1rid 7215 ax-0id 7216 ax-rnegex 7217 ax-precex 7218 ax-cnre 7219 ax-pre-ltirr 7220 ax-pre-ltwlin 7221 ax-pre-lttrn 7222 ax-pre-apti 7223 ax-pre-ltadd 7224 ax-pre-mulgt0 7225 ax-pre-mulext 7226 ax-arch 7227 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-id 4076 df-po 4079 df-iso 4080 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-fv 4960 df-riota 5520 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-1st 5819 df-2nd 5820 df-pnf 7287 df-mnf 7288 df-xr 7289 df-ltxr 7290 df-le 7291 df-sub 7418 df-neg 7419 df-reap 7812 df-ap 7819 df-div 7898 df-inn 8177 df-n0 8426 df-z 8503 df-q 8856 df-rp 8886 df-fl 9422 df-mod 9475 |
This theorem is referenced by: modqabs 9509 modqaddabs 9514 modqaddmod 9515 modqmuladdim 9519 modqmuladdnn0 9520 modqadd2mod 9526 modqltm1p1mod 9528 modqsubmod 9534 modqsubmodmod 9535 modqmulmod 9541 modqmulmodr 9542 modqaddmulmod 9543 modqsubdir 9545 addmodlteq 9550 divalgmod 10552 bezoutlemnewy 10610 crth 10825 phimullem 10826 |
Copyright terms: Public domain | W3C validator |