ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqid Unicode version

Theorem modqid 9483
Description: Identity law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
Assertion
Ref Expression
modqid  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A  mod  B )  =  A )

Proof of Theorem modqid
StepHypRef Expression
1 simpll 496 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  A  e.  QQ )
2 simplr 497 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  B  e.  QQ )
3 0red 7234 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  0  e.  RR )
4 qre 8843 . . . . 5  |-  ( A  e.  QQ  ->  A  e.  RR )
54ad2antrr 472 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  A  e.  RR )
6 qre 8843 . . . . 5  |-  ( B  e.  QQ  ->  B  e.  RR )
76ad2antlr 473 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  B  e.  RR )
8 simprl 498 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  0  <_  A )
9 simprr 499 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  A  <  B )
103, 5, 7, 8, 9lelttrd 7353 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  0  <  B )
11 modqval 9458 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( A  mod  B )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B
) ) ) ) )
121, 2, 10, 11syl3anc 1170 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A  mod  B )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B
) ) ) ) )
1310gt0ne0d 7732 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  B  =/=  0 )
14 qdivcl 8861 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )
151, 2, 13, 14syl3anc 1170 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A  /  B )  e.  QQ )
16 qcn 8852 . . . . . . . 8  |-  ( ( A  /  B )  e.  QQ  ->  ( A  /  B )  e.  CC )
17 addid2 7366 . . . . . . . . 9  |-  ( ( A  /  B )  e.  CC  ->  (
0  +  ( A  /  B ) )  =  ( A  /  B ) )
1817fveq2d 5233 . . . . . . . 8  |-  ( ( A  /  B )  e.  CC  ->  ( |_ `  ( 0  +  ( A  /  B
) ) )  =  ( |_ `  ( A  /  B ) ) )
1915, 16, 183syl 17 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( |_ `  ( 0  +  ( A  /  B
) ) )  =  ( |_ `  ( A  /  B ) ) )
20 divge0 8070 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  0  <_  ( A  /  B ) )
215, 8, 7, 10, 20syl22anc 1171 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  0  <_  ( A  /  B
) )
227recnd 7261 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  B  e.  CC )
2322mulid1d 7250 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( B  x.  1 )  =  B )
249, 23breqtrrd 3831 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  A  <  ( B  x.  1 ) )
25 1red 7248 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  1  e.  RR )
26 ltdivmul 8073 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( ( A  /  B )  <  1  <->  A  <  ( B  x.  1 ) ) )
275, 25, 7, 10, 26syl112anc 1174 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  (
( A  /  B
)  <  1  <->  A  <  ( B  x.  1 ) ) )
2824, 27mpbird 165 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A  /  B )  <  1 )
29 0z 8495 . . . . . . . . 9  |-  0  e.  ZZ
30 flqbi2 9425 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  ( A  /  B
)  e.  QQ )  ->  ( ( |_
`  ( 0  +  ( A  /  B
) ) )  =  0  <->  ( 0  <_ 
( A  /  B
)  /\  ( A  /  B )  <  1
) ) )
3129, 15, 30sylancr 405 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  (
( |_ `  (
0  +  ( A  /  B ) ) )  =  0  <->  (
0  <_  ( A  /  B )  /\  ( A  /  B )  <  1 ) ) )
3221, 28, 31mpbir2and 886 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( |_ `  ( 0  +  ( A  /  B
) ) )  =  0 )
3319, 32eqtr3d 2117 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( |_ `  ( A  /  B ) )  =  0 )
3433oveq2d 5579 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( B  x.  ( |_ `  ( A  /  B
) ) )  =  ( B  x.  0 ) )
3522mul01d 7616 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( B  x.  0 )  =  0 )
3634, 35eqtrd 2115 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( B  x.  ( |_ `  ( A  /  B
) ) )  =  0 )
3736oveq2d 5579 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) )  =  ( A  -  0 ) )
385recnd 7261 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  A  e.  CC )
3938subid1d 7527 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A  -  0 )  =  A )
4037, 39eqtrd 2115 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) )  =  A )
4112, 40eqtrd 2115 1  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A  mod  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434    =/= wne 2249   class class class wbr 3805   ` cfv 4952  (class class class)co 5563   CCcc 7093   RRcr 7094   0cc0 7095   1c1 7096    + caddc 7098    x. cmul 7100    < clt 7267    <_ cle 7268    - cmin 7398    / cdiv 7879   ZZcz 8484   QQcq 8837   |_cfl 9402    mod cmo 9456
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-n0 8408  df-z 8485  df-q 8838  df-rp 8868  df-fl 9404  df-mod 9457
This theorem is referenced by:  modqid2  9485  q0mod  9489  q1mod  9490  modqabs  9491  mulqaddmodid  9498  m1modnnsub1  9504  modqltm1p1mod  9510  q2submod  9519  modifeq2int  9520  modaddmodlo  9522  modqsubdir  9527  modsumfzodifsn  9530  crth  10807
  Copyright terms: Public domain W3C validator