ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmuladdnn0 Unicode version

Theorem modqmuladdnn0 10134
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
Assertion
Ref Expression
modqmuladdnn0  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) ) )
Distinct variable groups:    A, k    B, k    k, M

Proof of Theorem modqmuladdnn0
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  i  e.  ZZ )
21adantr 274 . . . . 5  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  -> 
i  e.  ZZ )
3 nn0cn 8980 . . . . . . . . . . . 12  |-  ( A  e.  NN0  ->  A  e.  CC )
433ad2ant1 1002 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  A  e.  CC )
54ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  A  e.  CC )
6 nn0z 9067 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  NN0  ->  A  e.  ZZ )
7 zq 9411 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ZZ  ->  A  e.  QQ )
86, 7syl 14 . . . . . . . . . . . . . . . 16  |-  ( A  e.  NN0  ->  A  e.  QQ )
983ad2ant1 1002 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  A  e.  QQ )
109adantr 274 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  A  e.  QQ )
11 simpl2 985 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  M  e.  QQ )
12 simpl3 986 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
0  <  M )
1310, 11, 12modqcld 10094 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  e.  QQ )
14 qcn 9419 . . . . . . . . . . . . 13  |-  ( ( A  mod  M )  e.  QQ  ->  ( A  mod  M )  e.  CC )
1513, 14syl 14 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  mod  M
)  e.  CC )
16 eleq1 2200 . . . . . . . . . . . . 13  |-  ( ( A  mod  M )  =  B  ->  (
( A  mod  M
)  e.  CC  <->  B  e.  CC ) )
1716adantl 275 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( ( A  mod  M )  e.  CC  <->  B  e.  CC ) )
1815, 17mpbid 146 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  B  e.  CC )
1918adantr 274 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  B  e.  CC )
20 zcn 9052 . . . . . . . . . . . 12  |-  ( i  e.  ZZ  ->  i  e.  CC )
2120adantl 275 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  i  e.  CC )
22 qcn 9419 . . . . . . . . . . . . 13  |-  ( M  e.  QQ  ->  M  e.  CC )
2311, 22syl 14 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  M  e.  CC )
2423adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  M  e.  CC )
2521, 24mulcld 7779 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
i  x.  M )  e.  CC )
265, 19, 25subadd2d 8085 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  B
)  =  ( i  x.  M )  <->  ( (
i  x.  M )  +  B )  =  A ) )
27 eqcom 2139 . . . . . . . . 9  |-  ( A  =  ( ( i  x.  M )  +  B )  <->  ( (
i  x.  M )  +  B )  =  A )
2826, 27syl6rbbr 198 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  =  ( (
i  x.  M )  +  B )  <->  ( A  -  B )  =  ( i  x.  M ) ) )
294adantr 274 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  A  e.  CC )
3029, 18subcld 8066 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( A  -  B
)  e.  CC )
3130adantr 274 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  -  B )  e.  CC )
32 qre 9410 . . . . . . . . . . . 12  |-  ( M  e.  QQ  ->  M  e.  RR )
33323ad2ant2 1003 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  M  e.  RR )
3433ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  M  e.  RR )
3512adantr 274 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  0  <  M )
3634, 35gt0ap0d 8384 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  M #  0 )
3731, 21, 24, 36divmulap3d 8578 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( ( A  -  B )  /  M
)  =  i  <->  ( A  -  B )  =  ( i  x.  M ) ) )
38 oveq2 5775 . . . . . . . . . . . . . 14  |-  ( B  =  ( A  mod  M )  ->  ( A  -  B )  =  ( A  -  ( A  mod  M ) ) )
3938oveq1d 5782 . . . . . . . . . . . . 13  |-  ( B  =  ( A  mod  M )  ->  ( ( A  -  B )  /  M )  =  ( ( A  -  ( A  mod  M ) )  /  M ) )
4039eqcoms 2140 . . . . . . . . . . . 12  |-  ( ( A  mod  M )  =  B  ->  (
( A  -  B
)  /  M )  =  ( ( A  -  ( A  mod  M ) )  /  M
) )
4140adantl 275 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  -> 
( ( A  -  B )  /  M
)  =  ( ( A  -  ( A  mod  M ) )  /  M ) )
4241adantr 274 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  B
)  /  M )  =  ( ( A  -  ( A  mod  M ) )  /  M
) )
43 modqdiffl 10101 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  -  ( A  mod  M ) )  /  M )  =  ( |_ `  ( A  /  M ) ) )
448, 43syl3an1 1249 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  -  ( A  mod  M ) )  /  M )  =  ( |_ `  ( A  /  M ) ) )
4544ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  ( A  mod  M ) )  /  M )  =  ( |_ `  ( A  /  M ) ) )
4642, 45eqtrd 2170 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( A  -  B
)  /  M )  =  ( |_ `  ( A  /  M
) ) )
4746eqeq1d 2146 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( ( A  -  B )  /  M
)  =  i  <->  ( |_ `  ( A  /  M
) )  =  i ) )
4828, 37, 473bitr2d 215 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  =  ( (
i  x.  M )  +  B )  <->  ( |_ `  ( A  /  M
) )  =  i ) )
49 qre 9410 . . . . . . . . . . . 12  |-  ( A  e.  QQ  ->  A  e.  RR )
509, 49syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  A  e.  RR )
51 nn0ge0 8995 . . . . . . . . . . . 12  |-  ( A  e.  NN0  ->  0  <_  A )
52513ad2ant1 1002 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  A )
53 simp3 983 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  0  <  M )
54 divge0 8624 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( M  e.  RR  /\  0  <  M ) )  ->  0  <_  ( A  /  M ) )
5550, 52, 33, 53, 54syl22anc 1217 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  ( A  /  M
) )
56 simp2 982 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  M  e.  QQ )
5753gt0ne0d 8267 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  M  =/=  0 )
58 qdivcl 9428 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  M  =/=  0 )  ->  ( A  /  M )  e.  QQ )
599, 56, 57, 58syl3anc 1216 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  ( A  /  M )  e.  QQ )
60 0z 9058 . . . . . . . . . . 11  |-  0  e.  ZZ
61 flqge 10048 . . . . . . . . . . 11  |-  ( ( ( A  /  M
)  e.  QQ  /\  0  e.  ZZ )  ->  ( 0  <_  ( A  /  M )  <->  0  <_  ( |_ `  ( A  /  M ) ) ) )
6259, 60, 61sylancl 409 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
0  <_  ( A  /  M )  <->  0  <_  ( |_ `  ( A  /  M ) ) ) )
6355, 62mpbid 146 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  ( |_ `  ( A  /  M ) ) )
64 breq2 3928 . . . . . . . . 9  |-  ( ( |_ `  ( A  /  M ) )  =  i  ->  (
0  <_  ( |_ `  ( A  /  M
) )  <->  0  <_  i ) )
6563, 64syl5ibcom 154 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( |_ `  ( A  /  M ) )  =  i  ->  0  <_  i ) )
6665ad2antrr 479 . . . . . . 7  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  (
( |_ `  ( A  /  M ) )  =  i  ->  0  <_  i ) )
6748, 66sylbid 149 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  M  e.  QQ  /\  0  <  M
)  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  ->  ( A  =  ( (
i  x.  M )  +  B )  -> 
0  <_  i )
)
6867imp 123 . . . . 5  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  -> 
0  <_  i )
69 elnn0z 9060 . . . . 5  |-  ( i  e.  NN0  <->  ( i  e.  ZZ  /\  0  <_ 
i ) )
702, 68, 69sylanbrc 413 . . . 4  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  -> 
i  e.  NN0 )
71 oveq1 5774 . . . . . . 7  |-  ( k  =  i  ->  (
k  x.  M )  =  ( i  x.  M ) )
7271oveq1d 5782 . . . . . 6  |-  ( k  =  i  ->  (
( k  x.  M
)  +  B )  =  ( ( i  x.  M )  +  B ) )
7372eqeq2d 2149 . . . . 5  |-  ( k  =  i  ->  ( A  =  ( (
k  x.  M )  +  B )  <->  A  =  ( ( i  x.  M )  +  B
) ) )
7473adantl 275 . . . 4  |-  ( ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  /\  k  =  i )  ->  ( A  =  ( ( k  x.  M
)  +  B )  <-> 
A  =  ( ( i  x.  M )  +  B ) ) )
75 simpr 109 . . . 4  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  ->  A  =  ( (
i  x.  M )  +  B ) )
7670, 74, 75rspcedvd 2790 . . 3  |-  ( ( ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  < 
M )  /\  ( A  mod  M )  =  B )  /\  i  e.  ZZ )  /\  A  =  ( ( i  x.  M )  +  B ) )  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) )
77 modqmuladdim 10133 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. i  e.  ZZ  A  =  ( (
i  x.  M )  +  B ) ) )
786, 77syl3an1 1249 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. i  e.  ZZ  A  =  ( (
i  x.  M )  +  B ) ) )
7978imp 123 . . 3  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  E. i  e.  ZZ  A  =  ( (
i  x.  M )  +  B ) )
8076, 79r19.29a 2573 . 2  |-  ( ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  B )  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) )
8180ex 114 1  |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  B  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480    =/= wne 2306   E.wrex 2415   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   CCcc 7611   RRcr 7612   0cc0 7613    + caddc 7616    x. cmul 7618    < clt 7793    <_ cle 7794    - cmin 7926    / cdiv 8425   NN0cn0 8970   ZZcz 9047   QQcq 9404   |_cfl 10034    mod cmo 10088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-n0 8971  df-z 9048  df-q 9405  df-rp 9435  df-ico 9670  df-fl 10036  df-mod 10089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator