ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  monoord Unicode version

Theorem monoord 9551
Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
monoord.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
monoord.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
monoord.3  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
Assertion
Ref Expression
monoord  |-  ( ph  ->  ( F `  M
)  <_  ( F `  N ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem monoord
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 monoord.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 9127 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 eleq1 2142 . . . . . 6  |-  ( x  =  M  ->  (
x  e.  ( M ... N )  <->  M  e.  ( M ... N ) ) )
5 fveq2 5209 . . . . . . 7  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
65breq2d 3805 . . . . . 6  |-  ( x  =  M  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  M )
) )
74, 6imbi12d 232 . . . . 5  |-  ( x  =  M  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( M  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  M )
) ) )
87imbi2d 228 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( M  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  M )
) ) ) )
9 eleq1 2142 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( M ... N )  <->  n  e.  ( M ... N ) ) )
10 fveq2 5209 . . . . . . 7  |-  ( x  =  n  ->  ( F `  x )  =  ( F `  n ) )
1110breq2d 3805 . . . . . 6  |-  ( x  =  n  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  n )
) )
129, 11imbi12d 232 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( n  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  n )
) ) )
1312imbi2d 228 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( n  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  n )
) ) ) )
14 eleq1 2142 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( M ... N )  <->  ( n  +  1 )  e.  ( M ... N
) ) )
15 fveq2 5209 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  ( F `  x )  =  ( F `  ( n  +  1
) ) )
1615breq2d 3805 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) )
1714, 16imbi12d 232 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( ( n  +  1 )  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) )
1817imbi2d 228 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) ) )
19 eleq1 2142 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
20 fveq2 5209 . . . . . . 7  |-  ( x  =  N  ->  ( F `  x )  =  ( F `  N ) )
2120breq2d 3805 . . . . . 6  |-  ( x  =  N  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  N )
) )
2219, 21imbi12d 232 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( N  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  N )
) ) )
2322imbi2d 228 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( N  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  N )
) ) ) )
24 eluzfz1 9126 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
251, 24syl 14 . . . . . . . 8  |-  ( ph  ->  M  e.  ( M ... N ) )
26 monoord.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
2726ralrimiva 2435 . . . . . . . 8  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  e.  RR )
28 fveq2 5209 . . . . . . . . . 10  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2928eleq1d 2148 . . . . . . . . 9  |-  ( k  =  M  ->  (
( F `  k
)  e.  RR  <->  ( F `  M )  e.  RR ) )
3029rspcv 2698 . . . . . . . 8  |-  ( M  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  M )  e.  RR ) )
3125, 27, 30sylc 61 . . . . . . 7  |-  ( ph  ->  ( F `  M
)  e.  RR )
3231leidd 7682 . . . . . 6  |-  ( ph  ->  ( F `  M
)  <_  ( F `  M ) )
3332a1d 22 . . . . 5  |-  ( ph  ->  ( M  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  M )
) )
3433a1i 9 . . . 4  |-  ( M  e.  ZZ  ->  ( ph  ->  ( M  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  M )
) ) )
35 simprl 498 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( ZZ>= `  M )
)
36 simprr 499 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( M ... N
) )
37 peano2fzr 9132 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) )  ->  n  e.  ( M ... N ) )
3835, 36, 37syl2anc 403 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... N ) )
3938expr 367 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  n  e.  ( M ... N
) ) )
4039imim1d 74 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
( F `  M
)  <_  ( F `  n ) )  -> 
( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  n )
) ) )
41 eluzelz 8709 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
4235, 41syl 14 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ZZ )
43 elfzuz3 9118 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
4436, 43syl 14 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
45 eluzp1m1 8723 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  N  e.  ( ZZ>= `  ( n  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  n ) )
4642, 44, 45syl2anc 403 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  n )
)
47 elfzuzb 9115 . . . . . . . . . . . 12  |-  ( n  e.  ( M ... ( N  -  1
) )  <->  ( n  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  n ) ) )
4835, 46, 47sylanbrc 408 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... ( N  -  1 ) ) )
49 monoord.3 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
5049ralrimiva 2435 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  ( M ... ( N  -  1 ) ) ( F `  k
)  <_  ( F `  ( k  +  1 ) ) )
5150adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. k  e.  ( M ... ( N  -  1 ) ) ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
52 fveq2 5209 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
53 oveq1 5550 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
5453fveq2d 5213 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( n  +  1
) ) )
5552, 54breq12d 3806 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
( F `  k
)  <_  ( F `  ( k  +  1 ) )  <->  ( F `  n )  <_  ( F `  ( n  +  1 ) ) ) )
5655rspcv 2698 . . . . . . . . . . 11  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  ( A. k  e.  ( M ... ( N  - 
1 ) ) ( F `  k )  <_  ( F `  ( k  +  1 ) )  ->  ( F `  n )  <_  ( F `  (
n  +  1 ) ) ) )
5748, 51, 56sylc 61 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  n )  <_  ( F `  ( n  +  1 ) ) )
5831adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  M )  e.  RR )
5927adantr 270 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. k  e.  ( M ... N
) ( F `  k )  e.  RR )
6052eleq1d 2148 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  (
( F `  k
)  e.  RR  <->  ( F `  n )  e.  RR ) )
6160rspcv 2698 . . . . . . . . . . . 12  |-  ( n  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  n )  e.  RR ) )
6238, 59, 61sylc 61 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  n )  e.  RR )
63 fveq2 5209 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
6463eleq1d 2148 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( n  +  1 ) )  e.  RR ) )
6564rspcv 2698 . . . . . . . . . . . 12  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  ( n  +  1 ) )  e.  RR ) )
6636, 59, 65sylc 61 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  e.  RR )
67 letr 7261 . . . . . . . . . . 11  |-  ( ( ( F `  M
)  e.  RR  /\  ( F `  n )  e.  RR  /\  ( F `  ( n  +  1 ) )  e.  RR )  -> 
( ( ( F `
 M )  <_ 
( F `  n
)  /\  ( F `  n )  <_  ( F `  ( n  +  1 ) ) )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) )
6858, 62, 66, 67syl3anc 1170 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (
( F `  M
)  <_  ( F `  n )  /\  ( F `  n )  <_  ( F `  (
n  +  1 ) ) )  ->  ( F `  M )  <_  ( F `  (
n  +  1 ) ) ) )
6957, 68mpan2d 419 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( ( F `  M )  <_  ( F `  n
)  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) )
7069expr 367 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  (
( F `  M
)  <_  ( F `  n )  ->  ( F `  M )  <_  ( F `  (
n  +  1 ) ) ) ) )
7170a2d 26 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
( n  +  1 )  e.  ( M ... N )  -> 
( F `  M
)  <_  ( F `  n ) )  -> 
( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) )
7240, 71syld 44 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
( F `  M
)  <_  ( F `  n ) )  -> 
( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) )
7372expcom 114 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( n  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  n )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  (
n  +  1 ) ) ) ) ) )
7473a2d 26 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( n  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  n )
) )  ->  ( ph  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) ) )
758, 13, 18, 23, 34, 74uzind4 8757 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( N  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  N )
) ) )
761, 75mpcom 36 . 2  |-  ( ph  ->  ( N  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  N )
) )
773, 76mpd 13 1  |-  ( ph  ->  ( F `  M
)  <_  ( F `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   A.wral 2349   class class class wbr 3793   ` cfv 4932  (class class class)co 5543   RRcr 7042   1c1 7044    + caddc 7046    <_ cle 7216    - cmin 7346   ZZcz 8432   ZZ>=cuz 8700   ...cfz 9105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-addass 7140  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-ltadd 7154
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-inn 8107  df-n0 8356  df-z 8433  df-uz 8701  df-fz 9106
This theorem is referenced by:  monoord2  9552  isermono  9553  climub  10320
  Copyright terms: Public domain W3C validator