ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  monoord2 Unicode version

Theorem monoord2 10250
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
monoord2.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
monoord2.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
monoord2.3  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k )
)
Assertion
Ref Expression
monoord2  |-  ( ph  ->  ( F `  N
)  <_  ( F `  M ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem monoord2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 monoord2.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 monoord2.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
32renegcld 8142 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  -u ( F `
 k )  e.  RR )
4 eqid 2139 . . . . . 6  |-  ( k  e.  ( M ... N )  |->  -u ( F `  k )
)  =  ( k  e.  ( M ... N )  |->  -u ( F `  k )
)
53, 4fmptd 5574 . . . . 5  |-  ( ph  ->  ( k  e.  ( M ... N ) 
|->  -u ( F `  k ) ) : ( M ... N
) --> RR )
65ffvelrnda 5555 . . . 4  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  n )  e.  RR )
7 monoord2.3 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k )
)
87ralrimiva 2505 . . . . . . . 8  |-  ( ph  ->  A. k  e.  ( M ... ( N  -  1 ) ) ( F `  (
k  +  1 ) )  <_  ( F `  k ) )
9 oveq1 5781 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
109fveq2d 5425 . . . . . . . . . 10  |-  ( k  =  n  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( n  +  1
) ) )
11 fveq2 5421 . . . . . . . . . 10  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
1210, 11breq12d 3942 . . . . . . . . 9  |-  ( k  =  n  ->  (
( F `  (
k  +  1 ) )  <_  ( F `  k )  <->  ( F `  ( n  +  1 ) )  <_  ( F `  n )
) )
1312cbvralv 2654 . . . . . . . 8  |-  ( A. k  e.  ( M ... ( N  -  1 ) ) ( F `
 ( k  +  1 ) )  <_ 
( F `  k
)  <->  A. n  e.  ( M ... ( N  -  1 ) ) ( F `  (
n  +  1 ) )  <_  ( F `  n ) )
148, 13sylib 121 . . . . . . 7  |-  ( ph  ->  A. n  e.  ( M ... ( N  -  1 ) ) ( F `  (
n  +  1 ) )  <_  ( F `  n ) )
1514r19.21bi 2520 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( n  +  1 ) )  <_  ( F `  n )
)
16 fveq2 5421 . . . . . . . . 9  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
1716eleq1d 2208 . . . . . . . 8  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( n  +  1 ) )  e.  RR ) )
182ralrimiva 2505 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  e.  RR )
1918adantr 274 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  A. k  e.  ( M ... N
) ( F `  k )  e.  RR )
20 fzp1elp1 9855 . . . . . . . . . 10  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  (
n  +  1 )  e.  ( M ... ( ( N  - 
1 )  +  1 ) ) )
2120adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( n  +  1 )  e.  ( M ... (
( N  -  1 )  +  1 ) ) )
22 eluzelz 9335 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
231, 22syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ZZ )
2423zcnd 9174 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  CC )
25 ax-1cn 7713 . . . . . . . . . . . 12  |-  1  e.  CC
26 npcan 7971 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
2724, 25, 26sylancl 409 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
2827oveq2d 5790 . . . . . . . . . 10  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( M ... N ) )
2928adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( M ... ( ( N  - 
1 )  +  1 ) )  =  ( M ... N ) )
3021, 29eleqtrd 2218 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( n  +  1 )  e.  ( M ... N
) )
3117, 19, 30rspcdva 2794 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( n  +  1 ) )  e.  RR )
3211eleq1d 2208 . . . . . . . 8  |-  ( k  =  n  ->  (
( F `  k
)  e.  RR  <->  ( F `  n )  e.  RR ) )
33 fzssp1 9847 . . . . . . . . . 10  |-  ( M ... ( N  - 
1 ) )  C_  ( M ... ( ( N  -  1 )  +  1 ) )
3433, 28sseqtrid 3147 . . . . . . . . 9  |-  ( ph  ->  ( M ... ( N  -  1 ) )  C_  ( M ... N ) )
3534sselda 3097 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  n  e.  ( M ... N ) )
3632, 19, 35rspcdva 2794 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  e.  RR )
3731, 36lenegd 8286 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( ( F `  ( n  +  1 ) )  <_  ( F `  n )  <->  -u ( F `
 n )  <_  -u ( F `  (
n  +  1 ) ) ) )
3815, 37mpbid 146 . . . . 5  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -u ( F `
 n )  <_  -u ( F `  (
n  +  1 ) ) )
3936renegcld 8142 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -u ( F `
 n )  e.  RR )
4011negeqd 7957 . . . . . . 7  |-  ( k  =  n  ->  -u ( F `  k )  =  -u ( F `  n ) )
4140, 4fvmptg 5497 . . . . . 6  |-  ( ( n  e.  ( M ... N )  /\  -u ( F `  n
)  e.  RR )  ->  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  n )  =  -u ( F `  n ) )
4235, 39, 41syl2anc 408 . . . . 5  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  n )  =  -u ( F `  n ) )
4331renegcld 8142 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -u ( F `
 ( n  + 
1 ) )  e.  RR )
4416negeqd 7957 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  -u ( F `  k )  =  -u ( F `  ( n  +  1
) ) )
4544, 4fvmptg 5497 . . . . . 6  |-  ( ( ( n  +  1 )  e.  ( M ... N )  /\  -u ( F `  (
n  +  1 ) )  e.  RR )  ->  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  ( n  +  1 ) )  =  -u ( F `  ( n  +  1
) ) )
4630, 43, 45syl2anc 408 . . . . 5  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  ( n  +  1 ) )  =  -u ( F `  ( n  +  1
) ) )
4738, 42, 463brtr4d 3960 . . . 4  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  n )  <_  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  ( n  +  1 ) ) )
481, 6, 47monoord 10249 . . 3  |-  ( ph  ->  ( ( k  e.  ( M ... N
)  |->  -u ( F `  k ) ) `  M )  <_  (
( k  e.  ( M ... N ) 
|->  -u ( F `  k ) ) `  N ) )
49 eluzfz1 9811 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
501, 49syl 14 . . . 4  |-  ( ph  ->  M  e.  ( M ... N ) )
51 fveq2 5421 . . . . . . 7  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
5251eleq1d 2208 . . . . . 6  |-  ( k  =  M  ->  (
( F `  k
)  e.  RR  <->  ( F `  M )  e.  RR ) )
5352, 18, 50rspcdva 2794 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  RR )
5453renegcld 8142 . . . 4  |-  ( ph  -> 
-u ( F `  M )  e.  RR )
5551negeqd 7957 . . . . 5  |-  ( k  =  M  ->  -u ( F `  k )  =  -u ( F `  M ) )
5655, 4fvmptg 5497 . . . 4  |-  ( ( M  e.  ( M ... N )  /\  -u ( F `  M
)  e.  RR )  ->  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  M )  =  -u ( F `  M ) )
5750, 54, 56syl2anc 408 . . 3  |-  ( ph  ->  ( ( k  e.  ( M ... N
)  |->  -u ( F `  k ) ) `  M )  =  -u ( F `  M ) )
58 eluzfz2 9812 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
591, 58syl 14 . . . 4  |-  ( ph  ->  N  e.  ( M ... N ) )
60 fveq2 5421 . . . . . . 7  |-  ( k  =  N  ->  ( F `  k )  =  ( F `  N ) )
6160eleq1d 2208 . . . . . 6  |-  ( k  =  N  ->  (
( F `  k
)  e.  RR  <->  ( F `  N )  e.  RR ) )
6261, 18, 59rspcdva 2794 . . . . 5  |-  ( ph  ->  ( F `  N
)  e.  RR )
6362renegcld 8142 . . . 4  |-  ( ph  -> 
-u ( F `  N )  e.  RR )
6460negeqd 7957 . . . . 5  |-  ( k  =  N  ->  -u ( F `  k )  =  -u ( F `  N ) )
6564, 4fvmptg 5497 . . . 4  |-  ( ( N  e.  ( M ... N )  /\  -u ( F `  N
)  e.  RR )  ->  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  N )  =  -u ( F `  N ) )
6659, 63, 65syl2anc 408 . . 3  |-  ( ph  ->  ( ( k  e.  ( M ... N
)  |->  -u ( F `  k ) ) `  N )  =  -u ( F `  N ) )
6748, 57, 663brtr3d 3959 . 2  |-  ( ph  -> 
-u ( F `  M )  <_  -u ( F `  N )
)
6862, 53lenegd 8286 . 2  |-  ( ph  ->  ( ( F `  N )  <_  ( F `  M )  <->  -u ( F `  M
)  <_  -u ( F `
 N ) ) )
6967, 68mpbird 166 1  |-  ( ph  ->  ( F `  N
)  <_  ( F `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416   class class class wbr 3929    |-> cmpt 3989   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619   1c1 7621    + caddc 7623    <_ cle 7801    - cmin 7933   -ucneg 7934   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator