ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpanr1 Unicode version

Theorem mpanr1 428
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
mpanr1.1  |-  ps
mpanr1.2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Assertion
Ref Expression
mpanr1  |-  ( (
ph  /\  ch )  ->  th )

Proof of Theorem mpanr1
StepHypRef Expression
1 mpanr1.1 . 2  |-  ps
2 mpanr1.2 . . 3  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
32anassrs 392 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
41, 3mpanl2 426 1  |-  ( (
ph  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem is referenced by:  mpanr12  430  axcnre  7179  rec11api  7978  divdiv23apzi  7990  recp1lt1  8114  divgt0i  8125  divge0i  8126  ltreci  8127  lereci  8128  lt2msqi  8129  le2msqi  8130  msq11i  8131  ltdiv23i  8141  ge0gtmnf  9036  sqrt11i  10237  sqrtmuli  10238  sqrtmsq2i  10240  sqrtlei  10241  sqrtlti  10242
  Copyright terms: Public domain W3C validator