![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbii | Unicode version |
Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mpbii.min |
![]() ![]() |
mpbii.maj |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpbii |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbii.min |
. . 3
![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | mpbii.maj |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpbid 145 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: pm2.26dc 847 orandc 881 19.9ht 1573 ax11v2 1742 ax11v 1749 ax11ev 1750 equs5or 1752 nfsbxy 1860 nfsbxyt 1861 eqvisset 2610 vtoclgf 2658 eueq3dc 2767 mo2icl 2772 csbiegf 2947 un00 3297 sneqr 3560 preqr1 3568 preq12b 3570 prel12 3571 nfopd 3595 ssex 3923 iunpw 4237 nfimad 4707 dfrel2 4801 funsng 4976 cnvresid 5004 nffvd 5218 fnbrfvb 5246 funfvop 5311 acexmidlema 5534 tposf12 5918 supsnti 6477 recidnq 6645 ltaddnq 6659 ltadd1sr 7015 pncan3 7383 divcanap2 7835 ltp1 7989 ltm1 7991 recreclt 8045 nn0ind-raph 8545 2tnp1ge0ge0 9383 ltoddhalfle 10437 bezoutlemnewy 10529 bdsepnft 10836 bdssex 10851 bj-inex 10856 bj-d0clsepcl 10878 bj-2inf 10891 bj-inf2vnlem2 10924 |
Copyright terms: Public domain | W3C validator |