![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpi | Unicode version |
Description: A nested modus ponens inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Stefan Allan, 20-Mar-2006.) |
Ref | Expression |
---|---|
mpi.1 |
![]() ![]() |
mpi.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpi.1 |
. . 3
![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | mpi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpd 13 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 |
This theorem is referenced by: mp2 16 syl6mpi 63 mp2ani 423 pm2.24i 586 simplimdc 791 mp3an3 1258 3impexpbicom 1368 mpisyl 1376 equcomi 1633 equsex 1657 equsexd 1658 spimt 1665 spimeh 1668 equvini 1682 equveli 1683 sbcof2 1732 dveeq2 1737 ax11v2 1742 ax16i 1780 pm13.183 2733 euxfr2dc 2778 sbcth 2829 sbcth2 2902 ssun3 3138 ssun4 3139 ralf0 3352 rext 3978 exss 3990 uniopel 4019 onsucelsucexmid 4281 suc11g 4308 eunex 4312 ordsoexmid 4313 tfisi 4336 finds1 4351 relop 4514 dmrnssfld 4623 iss 4684 relcoi1 4879 nfunv 4963 funimass2 5008 fvssunirng 5221 fvmptg 5280 oprabidlem 5567 fovcl 5637 elovmpt2 5732 tfrlem1 5957 oaword1 6115 diffifi 6428 nlt1pig 6593 dmaddpq 6631 dmmulpq 6632 archnqq 6669 prarloclemarch2 6671 prarloclemlt 6745 cnegex 7353 nnge1 8129 zneo 8529 nn0o1gt2 10449 bdop 10824 bj-nntrans 10904 |
Copyright terms: Public domain | W3C validator |