ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt20 Unicode version

Theorem mpt20 5605
Description: A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
mpt20  |-  ( x  e.  (/) ,  y  e.  B  |->  C )  =  (/)

Proof of Theorem mpt20
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpt2 5548 . 2  |-  ( x  e.  (/) ,  y  e.  B  |->  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  (/)  /\  y  e.  B
)  /\  z  =  C ) }
2 df-oprab 5547 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) }  =  {
w  |  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ( ( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) ) }
3 noel 3262 . . . . . . 7  |-  -.  x  e.  (/)
4 simprll 504 . . . . . . 7  |-  ( ( w  =  <. <. x ,  y >. ,  z
>.  /\  ( ( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) )  ->  x  e.  (/) )
53, 4mto 621 . . . . . 6  |-  -.  (
w  =  <. <. x ,  y >. ,  z
>.  /\  ( ( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) )
65nex 1430 . . . . 5  |-  -.  E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\  ( ( x  e.  (/)  /\  y  e.  B
)  /\  z  =  C ) )
76nex 1430 . . . 4  |-  -.  E. y E. z ( w  =  <. <. x ,  y
>. ,  z >.  /\  ( ( x  e.  (/)  /\  y  e.  B
)  /\  z  =  C ) )
87nex 1430 . . 3  |-  -.  E. x E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  (
( x  e.  (/)  /\  y  e.  B )  /\  z  =  C ) )
98abf 3294 . 2  |-  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\  ( ( x  e.  (/)  /\  y  e.  B
)  /\  z  =  C ) ) }  =  (/)
101, 2, 93eqtri 2106 1  |-  ( x  e.  (/) ,  y  e.  B  |->  C )  =  (/)
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1285   E.wex 1422    e. wcel 1434   {cab 2068   (/)c0 3258   <.cop 3409   {coprab 5544    |-> cmpt2 5545
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-dif 2976  df-in 2980  df-ss 2987  df-nul 3259  df-oprab 5547  df-mpt2 5548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator