ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt22eqb Unicode version

Theorem mpt22eqb 5641
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnov2 5639. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
mpt22eqb  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( ( x  e.  A , 
y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  A. x  e.  A  A. y  e.  B  C  =  D )
)
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hints:    B( x)    C( x, y)    D( x, y)    V( x, y)

Proof of Theorem mpt22eqb
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 pm13.183 2733 . . . . . 6  |-  ( C  e.  V  ->  ( C  =  D  <->  A. z
( z  =  C  <-> 
z  =  D ) ) )
21ralimi 2427 . . . . 5  |-  ( A. y  e.  B  C  e.  V  ->  A. y  e.  B  ( C  =  D  <->  A. z ( z  =  C  <->  z  =  D ) ) )
3 ralbi 2490 . . . . 5  |-  ( A. y  e.  B  ( C  =  D  <->  A. z
( z  =  C  <-> 
z  =  D ) )  ->  ( A. y  e.  B  C  =  D  <->  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
42, 3syl 14 . . . 4  |-  ( A. y  e.  B  C  e.  V  ->  ( A. y  e.  B  C  =  D  <->  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
54ralimi 2427 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  A. x  e.  A  ( A. y  e.  B  C  =  D  <->  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
6 ralbi 2490 . . 3  |-  ( A. x  e.  A  ( A. y  e.  B  C  =  D  <->  A. y  e.  B  A. z
( z  =  C  <-> 
z  =  D ) )  ->  ( A. x  e.  A  A. y  e.  B  C  =  D  <->  A. x  e.  A  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
75, 6syl 14 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( A. x  e.  A  A. y  e.  B  C  =  D  <->  A. x  e.  A  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
8 df-mpt2 5548 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
9 df-mpt2 5548 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  D )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) }
108, 9eqeq12i 2095 . . 3  |-  ( ( x  e.  A , 
y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  D ) } )
11 eqoprab2b 5594 . . 3  |-  ( {
<. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  D ) }  <->  A. x A. y A. z ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) ) )
12 pm5.32 441 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  B
)  ->  ( z  =  C  <->  z  =  D ) )  <->  ( (
( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) ) )
1312albii 1400 . . . . . 6  |-  ( A. z ( ( x  e.  A  /\  y  e.  B )  ->  (
z  =  C  <->  z  =  D ) )  <->  A. z
( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) ) )
14 19.21v 1795 . . . . . 6  |-  ( A. z ( ( x  e.  A  /\  y  e.  B )  ->  (
z  =  C  <->  z  =  D ) )  <->  ( (
x  e.  A  /\  y  e.  B )  ->  A. z ( z  =  C  <->  z  =  D ) ) )
1513, 14bitr3i 184 . . . . 5  |-  ( A. z ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C
)  <->  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  D ) )  <->  ( (
x  e.  A  /\  y  e.  B )  ->  A. z ( z  =  C  <->  z  =  D ) ) )
16152albii 1401 . . . 4  |-  ( A. x A. y A. z
( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  A. z
( z  =  C  <-> 
z  =  D ) ) )
17 r2al 2386 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  A. z ( z  =  C  <->  z  =  D )  <->  A. x A. y
( ( x  e.  A  /\  y  e.  B )  ->  A. z
( z  =  C  <-> 
z  =  D ) ) )
1816, 17bitr4i 185 . . 3  |-  ( A. x A. y A. z
( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) )  <->  A. x  e.  A  A. y  e.  B  A. z
( z  =  C  <-> 
z  =  D ) )
1910, 11, 183bitri 204 . 2  |-  ( ( x  e.  A , 
y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  A. x  e.  A  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) )
207, 19syl6rbbr 197 1  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( ( x  e.  A , 
y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  A. x  e.  A  A. y  e.  B  C  =  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1283    = wceq 1285    e. wcel 1434   A.wral 2349   {coprab 5544    |-> cmpt2 5545
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-setind 4288
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-oprab 5547  df-mpt2 5548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator