ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt2eq3ia Unicode version

Theorem mpt2eq3ia 5595
Description: An equality inference for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpt2eq3ia.1  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  =  D )
Assertion
Ref Expression
mpt2eq3ia  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )

Proof of Theorem mpt2eq3ia
StepHypRef Expression
1 mpt2eq3ia.1 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  =  D )
213adant1 957 . . 3  |-  ( ( T.  /\  x  e.  A  /\  y  e.  B )  ->  C  =  D )
32mpt2eq3dva 5594 . 2  |-  ( T. 
->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A , 
y  e.  B  |->  D ) )
43trud 1294 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285   T. wtru 1286    e. wcel 1434    |-> cmpt2 5539
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-oprab 5541  df-mpt2 5542
This theorem is referenced by:  oprab2co  5864  genpdf  6749  dfioo2  9062  iseqvalcbv  9520
  Copyright terms: Public domain W3C validator