ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt2exxg Unicode version

Theorem mpt2exxg 5861
Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
mpt2exg.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
mpt2exxg  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  F  e.  _V )
Distinct variable groups:    x, A, y   
y, B
Allowed substitution hints:    B( x)    C( x, y)    R( x, y)    S( x, y)    F( x, y)

Proof of Theorem mpt2exxg
StepHypRef Expression
1 mpt2exg.1 . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21mpt2fun 5631 . 2  |-  Fun  F
31dmmpt2ssx 5853 . . 3  |-  dom  F  C_ 
U_ x  e.  A  ( { x }  X.  B )
4 vex 2577 . . . . . . 7  |-  x  e. 
_V
5 snexg 3964 . . . . . . 7  |-  ( x  e.  _V  ->  { x }  e.  _V )
64, 5ax-mp 7 . . . . . 6  |-  { x }  e.  _V
7 xpexg 4480 . . . . . 6  |-  ( ( { x }  e.  _V  /\  B  e.  S
)  ->  ( {
x }  X.  B
)  e.  _V )
86, 7mpan 408 . . . . 5  |-  ( B  e.  S  ->  ( { x }  X.  B )  e.  _V )
98ralimi 2401 . . . 4  |-  ( A. x  e.  A  B  e.  S  ->  A. x  e.  A  ( {
x }  X.  B
)  e.  _V )
10 iunexg 5774 . . . 4  |-  ( ( A  e.  R  /\  A. x  e.  A  ( { x }  X.  B )  e.  _V )  ->  U_ x  e.  A  ( { x }  X.  B )  e.  _V )
119, 10sylan2 274 . . 3  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  U_ x  e.  A  ( {
x }  X.  B
)  e.  _V )
12 ssexg 3924 . . 3  |-  ( ( dom  F  C_  U_ x  e.  A  ( {
x }  X.  B
)  /\  U_ x  e.  A  ( { x }  X.  B )  e. 
_V )  ->  dom  F  e.  _V )
133, 11, 12sylancr 399 . 2  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  dom  F  e.  _V )
14 funex 5412 . 2  |-  ( ( Fun  F  /\  dom  F  e.  _V )  ->  F  e.  _V )
152, 13, 14sylancr 399 1  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    = wceq 1259    e. wcel 1409   A.wral 2323   _Vcvv 2574    C_ wss 2945   {csn 3403   U_ciun 3685    X. cxp 4371   dom cdm 4373   Fun wfun 4924    |-> cmpt2 5542
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796
This theorem is referenced by:  mpt2exg  5862  mpt2ex  5864
  Copyright terms: Public domain W3C validator