ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptun Unicode version

Theorem mptun 5057
Description: Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
mptun  |-  ( x  e.  ( A  u.  B )  |->  C )  =  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )

Proof of Theorem mptun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-mpt 3848 . 2  |-  ( x  e.  ( A  u.  B )  |->  C )  =  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  =  C ) }
2 df-mpt 3848 . . . 4  |-  ( x  e.  A  |->  C )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }
3 df-mpt 3848 . . . 4  |-  ( x  e.  B  |->  C )  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) }
42, 3uneq12i 3123 . . 3  |-  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )  =  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) } )
5 elun 3112 . . . . . . 7  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
65anbi1i 439 . . . . . 6  |-  ( ( x  e.  ( A  u.  B )  /\  y  =  C )  <->  ( ( x  e.  A  \/  x  e.  B
)  /\  y  =  C ) )
7 andir 743 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  y  =  C )  <->  ( (
x  e.  A  /\  y  =  C )  \/  ( x  e.  B  /\  y  =  C
) ) )
86, 7bitri 177 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  y  =  C )  <->  ( ( x  e.  A  /\  y  =  C
)  \/  ( x  e.  B  /\  y  =  C ) ) )
98opabbii 3852 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  =  C ) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  C
)  \/  ( x  e.  B  /\  y  =  C ) ) }
10 unopab 3864 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  C
)  \/  ( x  e.  B  /\  y  =  C ) ) }
119, 10eqtr4i 2079 . . 3  |-  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  =  C ) }  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) } )
124, 11eqtr4i 2079 . 2  |-  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )  =  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  =  C ) }
131, 12eqtr4i 2079 1  |-  ( x  e.  ( A  u.  B )  |->  C )  =  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 101    \/ wo 639    = wceq 1259    e. wcel 1409    u. cun 2943   {copab 3845    |-> cmpt 3846
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-opab 3847  df-mpt 3848
This theorem is referenced by:  fmptap  5381  fmptapd  5382
  Copyright terms: Public domain W3C validator