ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulap0r Unicode version

Theorem mulap0r 8377
Description: A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.)
Assertion
Ref Expression
mulap0r  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )

Proof of Theorem mulap0r
StepHypRef Expression
1 simp3 983 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A  x.  B ) #  0 )
2 simp2 982 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  B  e.  CC )
32mul02d 8154 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  (
0  x.  B )  =  0 )
41, 3breqtrrd 3956 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A  x.  B ) #  ( 0  x.  B
) )
5 simp1 981 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  A  e.  CC )
6 0cnd 7759 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  0  e.  CC )
7 mulext 8376 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( 0  e.  CC  /\  B  e.  CC ) )  -> 
( ( A  x.  B ) #  ( 0  x.  B )  -> 
( A #  0  \/  B #  B ) ) )
85, 2, 6, 2, 7syl22anc 1217 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  (
( A  x.  B
) #  ( 0  x.  B )  ->  ( A #  0  \/  B #  B ) ) )
94, 8mpd 13 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  \/  B #  B ) )
109orcomd 718 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( B #  B  \/  A #  0 ) )
11 apirr 8367 . . . 4  |-  ( B  e.  CC  ->  -.  B #  B )
12 biorf 733 . . . 4  |-  ( -.  B #  B  ->  ( A #  0  <->  ( B #  B  \/  A #  0 )
) )
132, 11, 123syl 17 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  <->  ( B #  B  \/  A #  0 )
) )
1410, 13mpbird 166 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  A #  0 )
155mul01d 8155 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A  x.  0 )  =  0 )
161, 15breqtrrd 3956 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A  x.  B ) #  ( A  x.  0
) )
17 mulext 8376 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( A  e.  CC  /\  0  e.  CC ) )  -> 
( ( A  x.  B ) #  ( A  x.  0 )  ->  ( A #  A  \/  B #  0 ) ) )
185, 2, 5, 6, 17syl22anc 1217 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  (
( A  x.  B
) #  ( A  x.  0 )  ->  ( A #  A  \/  B #  0 ) ) )
1916, 18mpd 13 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  A  \/  B #  0 ) )
20 apirr 8367 . . . 4  |-  ( A  e.  CC  ->  -.  A #  A )
21 biorf 733 . . . 4  |-  ( -.  A #  A  ->  ( B #  0  <->  ( A #  A  \/  B #  0 )
) )
225, 20, 213syl 17 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( B #  0  <->  ( A #  A  \/  B #  0 )
) )
2319, 22mpbird 166 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  B #  0 )
2414, 23jca 304 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   CCcc 7618   0cc0 7620    x. cmul 7625   # cap 8343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-ltxr 7805  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344
This theorem is referenced by:  msqge0  8378  mulge0  8381  mulap0b  8416
  Copyright terms: Public domain W3C validator