ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulasspig Unicode version

Theorem mulasspig 6488
Description: Multiplication of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.)
Assertion
Ref Expression
mulasspig  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .N  B
)  .N  C )  =  ( A  .N  ( B  .N  C
) ) )

Proof of Theorem mulasspig
StepHypRef Expression
1 pinn 6465 . . 3  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 6465 . . 3  |-  ( B  e.  N.  ->  B  e.  om )
3 pinn 6465 . . 3  |-  ( C  e.  N.  ->  C  e.  om )
4 nnmass 6097 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) )
51, 2, 3, 4syl3an 1188 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) )
6 mulclpi 6484 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  e.  N. )
7 mulpiord 6473 . . . . 5  |-  ( ( ( A  .N  B
)  e.  N.  /\  C  e.  N. )  ->  ( ( A  .N  B )  .N  C
)  =  ( ( A  .N  B )  .o  C ) )
86, 7sylan 271 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  .N  C )  =  ( ( A  .N  B
)  .o  C ) )
9 mulpiord 6473 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
109oveq1d 5555 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  .N  B )  .o  C
)  =  ( ( A  .o  B )  .o  C ) )
1110adantr 265 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  .o  C )  =  ( ( A  .o  B
)  .o  C ) )
128, 11eqtrd 2088 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  .N  C )  =  ( ( A  .o  B
)  .o  C ) )
13123impa 1110 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .N  B
)  .N  C )  =  ( ( A  .o  B )  .o  C ) )
14 mulclpi 6484 . . . . 5  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  .N  C
)  e.  N. )
15 mulpiord 6473 . . . . 5  |-  ( ( A  e.  N.  /\  ( B  .N  C
)  e.  N. )  ->  ( A  .N  ( B  .N  C ) )  =  ( A  .o  ( B  .N  C
) ) )
1614, 15sylan2 274 . . . 4  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  .N  ( B  .N  C
) )  =  ( A  .o  ( B  .N  C ) ) )
17 mulpiord 6473 . . . . . 6  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  .N  C
)  =  ( B  .o  C ) )
1817oveq2d 5556 . . . . 5  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( A  .o  ( B  .N  C ) )  =  ( A  .o  ( B  .o  C
) ) )
1918adantl 266 . . . 4  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  .o  ( B  .N  C
) )  =  ( A  .o  ( B  .o  C ) ) )
2016, 19eqtrd 2088 . . 3  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  .N  ( B  .N  C
) )  =  ( A  .o  ( B  .o  C ) ) )
21203impb 1111 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  .N  ( B  .N  C ) )  =  ( A  .o  ( B  .o  C ) ) )
225, 13, 213eqtr4d 2098 1  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .N  B
)  .N  C )  =  ( A  .N  ( B  .N  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    /\ w3a 896    = wceq 1259    e. wcel 1409   omcom 4341  (class class class)co 5540    .o comu 6030   N.cnpi 6428    .N cmi 6430
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-id 4058  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-oadd 6036  df-omul 6037  df-ni 6460  df-mi 6462
This theorem is referenced by:  enqer  6514  addcmpblnq  6523  mulcmpblnq  6524  ordpipqqs  6530  addassnqg  6538  mulassnqg  6540  mulcanenq  6541  distrnqg  6543  ltsonq  6554  ltanqg  6556  ltmnqg  6557  ltexnqq  6564
  Copyright terms: Public domain W3C validator