ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanpig Unicode version

Theorem mulcanpig 7143
Description: Multiplication cancellation law for positive integers. (Contributed by Jim Kingdon, 29-Aug-2019.)
Assertion
Ref Expression
mulcanpig  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .N  B
)  =  ( A  .N  C )  <->  B  =  C ) )

Proof of Theorem mulcanpig
StepHypRef Expression
1 mulpiord 7125 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
21adantr 274 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  .N  B )  =  ( A  .o  B ) )
3 mulpiord 7125 . . . . . 6  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  =  ( A  .o  C ) )
43adantlr 468 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  .N  C )  =  ( A  .o  C ) )
52, 4eqeq12d 2154 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C
)  <->  ( A  .o  B )  =  ( A  .o  C ) ) )
6 pinn 7117 . . . . . . . . 9  |-  ( A  e.  N.  ->  A  e.  om )
7 pinn 7117 . . . . . . . . 9  |-  ( B  e.  N.  ->  B  e.  om )
8 pinn 7117 . . . . . . . . 9  |-  ( C  e.  N.  ->  C  e.  om )
9 elni2 7122 . . . . . . . . . . . 12  |-  ( A  e.  N.  <->  ( A  e.  om  /\  (/)  e.  A
) )
109simprbi 273 . . . . . . . . . . 11  |-  ( A  e.  N.  ->  (/)  e.  A
)
11 nnmcan 6415 . . . . . . . . . . . 12  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  <->  B  =  C
) )
1211biimpd 143 . . . . . . . . . . 11  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  ->  B  =  C ) )
1310, 12sylan2 284 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  A  e.  N. )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  ->  B  =  C ) )
1413ex 114 . . . . . . . . 9  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) )
156, 7, 8, 14syl3an 1258 . . . . . . . 8  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) )
16153exp 1180 . . . . . . 7  |-  ( A  e.  N.  ->  ( B  e.  N.  ->  ( C  e.  N.  ->  ( A  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) ) ) )
1716com4r 86 . . . . . 6  |-  ( A  e.  N.  ->  ( A  e.  N.  ->  ( B  e.  N.  ->  ( C  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) ) ) )
1817pm2.43i 49 . . . . 5  |-  ( A  e.  N.  ->  ( B  e.  N.  ->  ( C  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) ) )
1918imp31 254 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  ->  B  =  C ) )
205, 19sylbid 149 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C
)  ->  B  =  C ) )
21203impa 1176 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .N  B
)  =  ( A  .N  C )  ->  B  =  C )
)
22 oveq2 5782 . 2  |-  ( B  =  C  ->  ( A  .N  B )  =  ( A  .N  C
) )
2321, 22impbid1 141 1  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .N  B
)  =  ( A  .N  C )  <->  B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   (/)c0 3363   omcom 4504  (class class class)co 5774    .o comu 6311   N.cnpi 7080    .N cmi 7082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-ni 7112  df-mi 7114
This theorem is referenced by:  enqer  7166
  Copyright terms: Public domain W3C validator