ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnq0 Unicode version

Theorem mulcmpblnq0 6685
Description: Lemma showing compatibility of multiplication on non-negative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.)
Assertion
Ref Expression
mulcmpblnq0  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  D )  =  ( B  .o  C )  /\  ( F  .o  S )  =  ( G  .o  R
) )  ->  <. ( A  .o  F ) ,  ( B  .o  G
) >. ~Q0  <.
( C  .o  R
) ,  ( D  .o  S ) >.
) )

Proof of Theorem mulcmpblnq0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 5546 . 2  |-  ( ( ( A  .o  D
)  =  ( B  .o  C )  /\  ( F  .o  S
)  =  ( G  .o  R ) )  ->  ( ( A  .o  D )  .o  ( F  .o  S
) )  =  ( ( B  .o  C
)  .o  ( G  .o  R ) ) )
2 nnmcl 6118 . . . . . . . 8  |-  ( ( A  e.  om  /\  F  e.  om )  ->  ( A  .o  F
)  e.  om )
3 mulpiord 6558 . . . . . . . . 9  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .N  G
)  =  ( B  .o  G ) )
4 mulclpi 6569 . . . . . . . . 9  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .N  G
)  e.  N. )
53, 4eqeltrrd 2157 . . . . . . . 8  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .o  G
)  e.  N. )
62, 5anim12i 331 . . . . . . 7  |-  ( ( ( A  e.  om  /\  F  e.  om )  /\  ( B  e.  N.  /\  G  e.  N. )
)  ->  ( ( A  .o  F )  e. 
om  /\  ( B  .o  G )  e.  N. ) )
76an4s 553 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( F  e.  om  /\  G  e.  N. )
)  ->  ( ( A  .o  F )  e. 
om  /\  ( B  .o  G )  e.  N. ) )
8 nnmcl 6118 . . . . . . . 8  |-  ( ( C  e.  om  /\  R  e.  om )  ->  ( C  .o  R
)  e.  om )
9 mulpiord 6558 . . . . . . . . 9  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .N  S
)  =  ( D  .o  S ) )
10 mulclpi 6569 . . . . . . . . 9  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .N  S
)  e.  N. )
119, 10eqeltrrd 2157 . . . . . . . 8  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .o  S
)  e.  N. )
128, 11anim12i 331 . . . . . . 7  |-  ( ( ( C  e.  om  /\  R  e.  om )  /\  ( D  e.  N.  /\  S  e.  N. )
)  ->  ( ( C  .o  R )  e. 
om  /\  ( D  .o  S )  e.  N. ) )
1312an4s 553 . . . . . 6  |-  ( ( ( C  e.  om  /\  D  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. )
)  ->  ( ( C  .o  R )  e. 
om  /\  ( D  .o  S )  e.  N. ) )
147, 13anim12i 331 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( F  e.  om  /\  G  e.  N. ) )  /\  ( ( C  e. 
om  /\  D  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  F )  e.  om  /\  ( B  .o  G )  e. 
N. )  /\  (
( C  .o  R
)  e.  om  /\  ( D  .o  S
)  e.  N. )
) )
1514an4s 553 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  F )  e.  om  /\  ( B  .o  G )  e. 
N. )  /\  (
( C  .o  R
)  e.  om  /\  ( D  .o  S
)  e.  N. )
) )
16 enq0breq 6677 . . . 4  |-  ( ( ( ( A  .o  F )  e.  om  /\  ( B  .o  G
)  e.  N. )  /\  ( ( C  .o  R )  e.  om  /\  ( D  .o  S
)  e.  N. )
)  ->  ( <. ( A  .o  F ) ,  ( B  .o  G ) >. ~Q0 
<. ( C  .o  R
) ,  ( D  .o  S ) >.  <->  ( ( A  .o  F
)  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  ( C  .o  R
) ) ) )
1715, 16syl 14 . . 3  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( <. ( A  .o  F ) ,  ( B  .o  G
) >. ~Q0  <.
( C  .o  R
) ,  ( D  .o  S ) >.  <->  ( ( A  .o  F
)  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  ( C  .o  R
) ) ) )
18 simplll 500 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  A  e.  om )
19 simprll 504 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  F  e.  om )
20 simplrr 503 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  D  e.  N. )
21 pinn 6550 . . . . . 6  |-  ( D  e.  N.  ->  D  e.  om )
2220, 21syl 14 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  D  e.  om )
23 nnmcom 6126 . . . . . 6  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  .o  y
)  =  ( y  .o  x ) )
2423adantl 271 . . . . 5  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om ) )  ->  (
x  .o  y )  =  ( y  .o  x ) )
25 nnmass 6124 . . . . . 6  |-  ( ( x  e.  om  /\  y  e.  om  /\  z  e.  om )  ->  (
( x  .o  y
)  .o  z )  =  ( x  .o  ( y  .o  z
) ) )
2625adantl 271 . . . . 5  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om 
/\  z  e.  om ) )  ->  (
( x  .o  y
)  .o  z )  =  ( x  .o  ( y  .o  z
) ) )
27 simprrr 507 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  S  e.  N. )
28 pinn 6550 . . . . . 6  |-  ( S  e.  N.  ->  S  e.  om )
2927, 28syl 14 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  S  e.  om )
30 nnmcl 6118 . . . . . 6  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  .o  y
)  e.  om )
3130adantl 271 . . . . 5  |-  ( ( ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  /\  ( x  e. 
om  /\  y  e.  om ) )  ->  (
x  .o  y )  e.  om )
3218, 19, 22, 24, 26, 29, 31caov4d 5710 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( A  .o  F )  .o  ( D  .o  S
) )  =  ( ( A  .o  D
)  .o  ( F  .o  S ) ) )
33 simpllr 501 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  B  e.  N. )
34 pinn 6550 . . . . . 6  |-  ( B  e.  N.  ->  B  e.  om )
3533, 34syl 14 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  B  e.  om )
36 simprlr 505 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  G  e.  N. )
37 pinn 6550 . . . . . 6  |-  ( G  e.  N.  ->  G  e.  om )
3836, 37syl 14 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  G  e.  om )
39 simplrl 502 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  C  e.  om )
40 simprrl 506 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  R  e.  om )
4135, 38, 39, 24, 26, 40, 31caov4d 5710 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( B  .o  G )  .o  ( C  .o  R
) )  =  ( ( B  .o  C
)  .o  ( G  .o  R ) ) )
4232, 41eqeq12d 2096 . . 3  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  F )  .o  ( D  .o  S ) )  =  ( ( B  .o  G )  .o  ( C  .o  R ) )  <-> 
( ( A  .o  D )  .o  ( F  .o  S ) )  =  ( ( B  .o  C )  .o  ( G  .o  R
) ) ) )
4317, 42bitrd 186 . 2  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( <. ( A  .o  F ) ,  ( B  .o  G
) >. ~Q0  <.
( C  .o  R
) ,  ( D  .o  S ) >.  <->  ( ( A  .o  D
)  .o  ( F  .o  S ) )  =  ( ( B  .o  C )  .o  ( G  .o  R
) ) ) )
441, 43syl5ibr 154 1  |-  ( ( ( ( A  e. 
om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. ) )  /\  ( ( F  e. 
om  /\  G  e.  N. )  /\  ( R  e.  om  /\  S  e.  N. ) ) )  ->  ( ( ( A  .o  D )  =  ( B  .o  C )  /\  ( F  .o  S )  =  ( G  .o  R
) )  ->  <. ( A  .o  F ) ,  ( B  .o  G
) >. ~Q0  <.
( C  .o  R
) ,  ( D  .o  S ) >.
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    = wceq 1285    e. wcel 1434   <.cop 3403   class class class wbr 3787   omcom 4333  (class class class)co 5537    .o comu 6057   N.cnpi 6513    .N cmi 6515   ~Q0 ceq0 6527
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3895  ax-sep 3898  ax-nul 3906  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-iinf 4331
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-tr 3878  df-id 4050  df-iord 4123  df-on 4125  df-suc 4128  df-iom 4334  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-f1 4931  df-fo 4932  df-f1o 4933  df-fv 4934  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 6013  df-oadd 6063  df-omul 6064  df-ni 6545  df-mi 6547  df-enq0 6665
This theorem is referenced by:  mulnq0mo  6689
  Copyright terms: Public domain W3C validator