ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomli Unicode version

Theorem mulcomli 7188
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1  |-  A  e.  CC
axi.2  |-  B  e.  CC
mulcomli.3  |-  ( A  x.  B )  =  C
Assertion
Ref Expression
mulcomli  |-  ( B  x.  A )  =  C

Proof of Theorem mulcomli
StepHypRef Expression
1 axi.2 . . 3  |-  B  e.  CC
2 axi.1 . . 3  |-  A  e.  CC
31, 2mulcomi 7187 . 2  |-  ( B  x.  A )  =  ( A  x.  B
)
4 mulcomli.3 . 2  |-  ( A  x.  B )  =  C
53, 4eqtri 2102 1  |-  ( B  x.  A )  =  C
Colors of variables: wff set class
Syntax hints:    = wceq 1285    e. wcel 1434  (class class class)co 5543   CCcc 7041    x. cmul 7048
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-4 1441  ax-17 1460  ax-ext 2064  ax-mulcom 7139
This theorem depends on definitions:  df-bi 115  df-cleq 2075
This theorem is referenced by:  nummul2c  8607  ex-fac  10716
  Copyright terms: Public domain W3C validator