ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomprg Unicode version

Theorem mulcomprg 7381
Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
mulcomprg  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  =  ( B  .P.  A ) )

Proof of Theorem mulcomprg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7276 . . . . . . . . 9  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 elprnql 7282 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  z  e.  ( 1st `  B ) )  -> 
z  e.  Q. )
31, 2sylan 281 . . . . . . . 8  |-  ( ( B  e.  P.  /\  z  e.  ( 1st `  B ) )  -> 
z  e.  Q. )
4 prop 7276 . . . . . . . . . . . . 13  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
5 elprnql 7282 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
64, 5sylan 281 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
7 mulcomnqg 7184 . . . . . . . . . . . . 13  |-  ( ( z  e.  Q.  /\  y  e.  Q. )  ->  ( z  .Q  y
)  =  ( y  .Q  z ) )
87eqeq2d 2149 . . . . . . . . . . . 12  |-  ( ( z  e.  Q.  /\  y  e.  Q. )  ->  ( x  =  ( z  .Q  y )  <-> 
x  =  ( y  .Q  z ) ) )
96, 8sylan2 284 . . . . . . . . . . 11  |-  ( ( z  e.  Q.  /\  ( A  e.  P.  /\  y  e.  ( 1st `  A ) ) )  ->  ( x  =  ( z  .Q  y
)  <->  x  =  (
y  .Q  z ) ) )
109anassrs 397 . . . . . . . . . 10  |-  ( ( ( z  e.  Q.  /\  A  e.  P. )  /\  y  e.  ( 1st `  A ) )  ->  ( x  =  ( z  .Q  y
)  <->  x  =  (
y  .Q  z ) ) )
1110rexbidva 2432 . . . . . . . . 9  |-  ( ( z  e.  Q.  /\  A  e.  P. )  ->  ( E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 1st `  A ) x  =  ( y  .Q  z ) ) )
1211ancoms 266 . . . . . . . 8  |-  ( ( A  e.  P.  /\  z  e.  Q. )  ->  ( E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 1st `  A ) x  =  ( y  .Q  z ) ) )
133, 12sylan2 284 . . . . . . 7  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  z  e.  ( 1st `  B ) ) )  ->  ( E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 1st `  A ) x  =  ( y  .Q  z ) ) )
1413anassrs 397 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  z  e.  ( 1st `  B ) )  ->  ( E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 1st `  A ) x  =  ( y  .Q  z ) ) )
1514rexbidva 2432 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. z  e.  ( 1st `  B
) E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. z  e.  ( 1st `  B ) E. y  e.  ( 1st `  A ) x  =  ( y  .Q  z
) ) )
16 rexcom 2593 . . . . 5  |-  ( E. z  e.  ( 1st `  B ) E. y  e.  ( 1st `  A
) x  =  ( y  .Q  z )  <->  E. y  e.  ( 1st `  A ) E. z  e.  ( 1st `  B ) x  =  ( y  .Q  z
) )
1715, 16syl6bb 195 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. z  e.  ( 1st `  B
) E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 1st `  A ) E. z  e.  ( 1st `  B ) x  =  ( y  .Q  z
) ) )
1817rabbidv 2670 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  { x  e.  Q.  |  E. z  e.  ( 1st `  B ) E. y  e.  ( 1st `  A ) x  =  ( z  .Q  y ) }  =  { x  e. 
Q.  |  E. y  e.  ( 1st `  A
) E. z  e.  ( 1st `  B
) x  =  ( y  .Q  z ) } )
19 elprnqu 7283 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  z  e.  ( 2nd `  B ) )  -> 
z  e.  Q. )
201, 19sylan 281 . . . . . . . 8  |-  ( ( B  e.  P.  /\  z  e.  ( 2nd `  B ) )  -> 
z  e.  Q. )
21 elprnqu 7283 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
224, 21sylan 281 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
2322, 8sylan2 284 . . . . . . . . . . 11  |-  ( ( z  e.  Q.  /\  ( A  e.  P.  /\  y  e.  ( 2nd `  A ) ) )  ->  ( x  =  ( z  .Q  y
)  <->  x  =  (
y  .Q  z ) ) )
2423anassrs 397 . . . . . . . . . 10  |-  ( ( ( z  e.  Q.  /\  A  e.  P. )  /\  y  e.  ( 2nd `  A ) )  ->  ( x  =  ( z  .Q  y
)  <->  x  =  (
y  .Q  z ) ) )
2524rexbidva 2432 . . . . . . . . 9  |-  ( ( z  e.  Q.  /\  A  e.  P. )  ->  ( E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 2nd `  A ) x  =  ( y  .Q  z ) ) )
2625ancoms 266 . . . . . . . 8  |-  ( ( A  e.  P.  /\  z  e.  Q. )  ->  ( E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 2nd `  A ) x  =  ( y  .Q  z ) ) )
2720, 26sylan2 284 . . . . . . 7  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  z  e.  ( 2nd `  B ) ) )  ->  ( E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 2nd `  A ) x  =  ( y  .Q  z ) ) )
2827anassrs 397 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  z  e.  ( 2nd `  B ) )  ->  ( E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 2nd `  A ) x  =  ( y  .Q  z ) ) )
2928rexbidva 2432 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. z  e.  ( 2nd `  B
) E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. z  e.  ( 2nd `  B ) E. y  e.  ( 2nd `  A ) x  =  ( y  .Q  z
) ) )
30 rexcom 2593 . . . . 5  |-  ( E. z  e.  ( 2nd `  B ) E. y  e.  ( 2nd `  A
) x  =  ( y  .Q  z )  <->  E. y  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  B ) x  =  ( y  .Q  z
) )
3129, 30syl6bb 195 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. z  e.  ( 2nd `  B
) E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y )  <->  E. y  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  B ) x  =  ( y  .Q  z
) ) )
3231rabbidv 2670 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  { x  e.  Q.  |  E. z  e.  ( 2nd `  B ) E. y  e.  ( 2nd `  A ) x  =  ( z  .Q  y ) }  =  { x  e. 
Q.  |  E. y  e.  ( 2nd `  A
) E. z  e.  ( 2nd `  B
) x  =  ( y  .Q  z ) } )
3318, 32opeq12d 3708 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
<. { x  e.  Q.  |  E. z  e.  ( 1st `  B ) E. y  e.  ( 1st `  A ) x  =  ( z  .Q  y ) } ,  { x  e. 
Q.  |  E. z  e.  ( 2nd `  B
) E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y ) } >.  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  A ) E. z  e.  ( 1st `  B ) x  =  ( y  .Q  z
) } ,  {
x  e.  Q.  |  E. y  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  B ) x  =  ( y  .Q  z
) } >. )
34 mpvlu 7340 . . 3  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  .P.  A
)  =  <. { x  e.  Q.  |  E. z  e.  ( 1st `  B
) E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y ) } ,  { x  e.  Q.  |  E. z  e.  ( 2nd `  B
) E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y ) } >. )
3534ancoms 266 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( B  .P.  A
)  =  <. { x  e.  Q.  |  E. z  e.  ( 1st `  B
) E. y  e.  ( 1st `  A
) x  =  ( z  .Q  y ) } ,  { x  e.  Q.  |  E. z  e.  ( 2nd `  B
) E. y  e.  ( 2nd `  A
) x  =  ( z  .Q  y ) } >. )
36 mpvlu 7340 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  =  <. { x  e.  Q.  |  E. y  e.  ( 1st `  A
) E. z  e.  ( 1st `  B
) x  =  ( y  .Q  z ) } ,  { x  e.  Q.  |  E. y  e.  ( 2nd `  A
) E. z  e.  ( 2nd `  B
) x  =  ( y  .Q  z ) } >. )
3733, 35, 363eqtr4rd 2181 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  =  ( B  .P.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2415   {crab 2418   <.cop 3525   ` cfv 5118  (class class class)co 5767   1stc1st 6029   2ndc2nd 6030   Q.cnq 7081    .Q cmq 7084   P.cnp 7092    .P. cmp 7095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-mi 7107  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-mqqs 7151  df-inp 7267  df-imp 7270
This theorem is referenced by:  ltmprr  7443  mulcmpblnrlemg  7541  mulcomsrg  7558  mulasssrg  7559  m1m1sr  7562  recexgt0sr  7574  mulgt0sr  7579  mulextsr1lem  7581  recidpirqlemcalc  7658
  Copyright terms: Public domain W3C validator