ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulexpzap Unicode version

Theorem mulexpzap 10333
Description: Integer exponentiation of a product. (Contributed by Jim Kingdon, 10-Jun-2020.)
Assertion
Ref Expression
mulexpzap  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  ZZ )  ->  ( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )

Proof of Theorem mulexpzap
StepHypRef Expression
1 elznn0nn 9068 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
2 simpl 108 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0 )  ->  A  e.  CC )
3 simpl 108 . . . . . 6  |-  ( ( B  e.  CC  /\  B #  0 )  ->  B  e.  CC )
42, 3anim12i 336 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  e.  CC  /\  B  e.  CC ) )
5 mulexp 10332 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
653expa 1181 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  N  e.  NN0 )  ->  ( ( A  x.  B ) ^ N )  =  ( ( A ^ N
)  x.  ( B ^ N ) ) )
74, 6sylan 281 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  N  e.  NN0 )  -> 
( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
8 simplll 522 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
9 simplrl 524 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  B  e.  CC )
108, 9mulcld 7786 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A  x.  B )  e.  CC )
11 simpllr 523 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A #  0 )
12 simplrr 525 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  B #  0 )
138, 9, 11, 12mulap0d 8419 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A  x.  B ) #  0 )
14 recn 7753 . . . . . . 7  |-  ( N  e.  RR  ->  N  e.  CC )
1514ad2antrl 481 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
16 nnnn0 8984 . . . . . . 7  |-  ( -u N  e.  NN  ->  -u N  e.  NN0 )
1716ad2antll 482 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
18 expineg2 10302 . . . . . 6  |-  ( ( ( ( A  x.  B )  e.  CC  /\  ( A  x.  B
) #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  (
( A  x.  B
) ^ N )  =  ( 1  / 
( ( A  x.  B ) ^ -u N
) ) )
1910, 13, 15, 17, 18syl22anc 1217 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A  x.  B
) ^ N )  =  ( 1  / 
( ( A  x.  B ) ^ -u N
) ) )
20 expineg2 10302 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
218, 11, 15, 17, 20syl22anc 1217 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
22 expineg2 10302 . . . . . . . 8  |-  ( ( ( B  e.  CC  /\  B #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  ( B ^ N )  =  ( 1  /  ( B ^ -u N ) ) )
239, 12, 15, 17, 22syl22anc 1217 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( B ^ N )  =  ( 1  /  ( B ^ -u N ) ) )
2421, 23oveq12d 5792 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A ^ N
)  x.  ( B ^ N ) )  =  ( ( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) ) )
25 mulexp 10332 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  -u N  e.  NN0 )  ->  (
( A  x.  B
) ^ -u N
)  =  ( ( A ^ -u N
)  x.  ( B ^ -u N ) ) )
268, 9, 17, 25syl3anc 1216 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A  x.  B
) ^ -u N
)  =  ( ( A ^ -u N
)  x.  ( B ^ -u N ) ) )
2726oveq2d 5790 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( ( A  x.  B ) ^ -u N ) )  =  ( 1  /  ( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
28 1t1e1 8872 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
2928oveq1i 5784 . . . . . . . 8  |-  ( ( 1  x.  1 )  /  ( ( A ^ -u N )  x.  ( B ^ -u N ) ) )  =  ( 1  / 
( ( A ^ -u N )  x.  ( B ^ -u N ) ) )
3027, 29syl6eqr 2190 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( ( A  x.  B ) ^ -u N ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
31 expcl 10311 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ -u N
)  e.  CC )
328, 17, 31syl2anc 408 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ -u N )  e.  CC )
33 nnz 9073 . . . . . . . . . 10  |-  ( -u N  e.  NN  ->  -u N  e.  ZZ )
3433ad2antll 482 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
35 expap0i 10325 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  -u N  e.  ZZ )  ->  ( A ^ -u N ) #  0 )
368, 11, 34, 35syl3anc 1216 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ -u N ) #  0 )
37 expcl 10311 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  -u N  e.  NN0 )  ->  ( B ^ -u N
)  e.  CC )
389, 17, 37syl2anc 408 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( B ^ -u N )  e.  CC )
39 expap0i 10325 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  B #  0  /\  -u N  e.  ZZ )  ->  ( B ^ -u N ) #  0 )
409, 12, 34, 39syl3anc 1216 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( B ^ -u N ) #  0 )
41 ax-1cn 7713 . . . . . . . . 9  |-  1  e.  CC
42 divmuldivap 8472 . . . . . . . . 9  |-  ( ( ( 1  e.  CC  /\  1  e.  CC )  /\  ( ( ( A ^ -u N
)  e.  CC  /\  ( A ^ -u N
) #  0 )  /\  ( ( B ^ -u N )  e.  CC  /\  ( B ^ -u N
) #  0 ) ) )  ->  ( (
1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) )  =  ( ( 1  x.  1 )  / 
( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
4341, 41, 42mpanl12 432 . . . . . . . 8  |-  ( ( ( ( A ^ -u N )  e.  CC  /\  ( A ^ -u N
) #  0 )  /\  ( ( B ^ -u N )  e.  CC  /\  ( B ^ -u N
) #  0 ) )  ->  ( ( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u N
)  x.  ( B ^ -u N ) ) ) )
4432, 36, 38, 40, 43syl22anc 1217 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) )  =  ( ( 1  x.  1 )  / 
( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
4530, 44eqtr4d 2175 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( ( A  x.  B ) ^ -u N ) )  =  ( ( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) ) )
4624, 45eqtr4d 2175 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A ^ N
)  x.  ( B ^ N ) )  =  ( 1  / 
( ( A  x.  B ) ^ -u N
) ) )
4719, 46eqtr4d 2175 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
487, 47jaodan 786 . . 3  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )  -> 
( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
491, 48sylan2b 285 . 2  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  N  e.  ZZ )  ->  ( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
50493impa 1176 1  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  ZZ )  ->  ( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620   1c1 7621    x. cmul 7625   -ucneg 7934   # cap 8343    / cdiv 8432   NNcn 8720   NN0cn0 8977   ZZcz 9054   ^cexp 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219  df-exp 10293
This theorem is referenced by:  exprecap  10334
  Copyright terms: Public domain W3C validator