![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulid1i | Unicode version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mulid1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | mulid1 7178 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-resscn 7130 ax-1cn 7131 ax-icn 7133 ax-addcl 7134 ax-mulcl 7136 ax-mulcom 7139 ax-mulass 7141 ax-distr 7142 ax-1rid 7145 ax-cnre 7149 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-iota 4897 df-fv 4940 df-ov 5546 |
This theorem is referenced by: rimul 7752 muleqadd 7825 1t1e1 8251 2t1e2 8252 3t1e3 8254 halfpm6th 8318 iap0 8321 9p1e10 8560 numltc 8583 numsucc 8597 dec10p 8600 numadd 8604 numaddc 8605 11multnc 8625 4t3lem 8654 5t2e10 8657 9t11e99 8687 rei 9924 imi 9925 cji 9927 3lcm2e6 10683 |
Copyright terms: Public domain | W3C validator |