ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulneg1 Unicode version

Theorem mulneg1 8157
Description: Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mulneg1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  x.  B )  =  -u ( A  x.  B
) )

Proof of Theorem mulneg1
StepHypRef Expression
1 0cn 7758 . . . 4  |-  0  e.  CC
2 subdir 8148 . . . 4  |-  ( ( 0  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( 0  -  A
)  x.  B )  =  ( ( 0  x.  B )  -  ( A  x.  B
) ) )
31, 2mp3an1 1302 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 0  -  A )  x.  B
)  =  ( ( 0  x.  B )  -  ( A  x.  B ) ) )
4 simpr 109 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
54mul02d 8154 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 0  x.  B
)  =  0 )
65oveq1d 5789 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 0  x.  B )  -  ( A  x.  B )
)  =  ( 0  -  ( A  x.  B ) ) )
73, 6eqtrd 2172 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 0  -  A )  x.  B
)  =  ( 0  -  ( A  x.  B ) ) )
8 df-neg 7936 . . 3  |-  -u A  =  ( 0  -  A )
98oveq1i 5784 . 2  |-  ( -u A  x.  B )  =  ( ( 0  -  A )  x.  B )
10 df-neg 7936 . 2  |-  -u ( A  x.  B )  =  ( 0  -  ( A  x.  B
) )
117, 9, 103eqtr4g 2197 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  x.  B )  =  -u ( A  x.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480  (class class class)co 5774   CCcc 7618   0cc0 7620    x. cmul 7625    - cmin 7933   -ucneg 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-resscn 7712  ax-1cn 7713  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7935  df-neg 7936
This theorem is referenced by:  mulneg2  8158  mulneg12  8159  mulm1  8162  mulneg1i  8166  mulneg1d  8173  divnegap  8466  zmulcl  9107  cjreim  10675  tanval3ap  11421  dvdsnegb  11510  odd2np1  11570  modgcd  11679  sinperlem  12889
  Copyright terms: Public domain W3C validator