ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulneg2 Unicode version

Theorem mulneg2 7465
Description: The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004.)
Assertion
Ref Expression
mulneg2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  -u B
)  =  -u ( A  x.  B )
)

Proof of Theorem mulneg2
StepHypRef Expression
1 mulneg1 7464 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( -u B  x.  A )  =  -u ( B  x.  A
) )
21ancoms 259 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u B  x.  A )  =  -u ( B  x.  A
) )
3 negcl 7274 . . 3  |-  ( B  e.  CC  ->  -u B  e.  CC )
4 mulcom 7068 . . 3  |-  ( ( A  e.  CC  /\  -u B  e.  CC )  ->  ( A  x.  -u B )  =  (
-u B  x.  A
) )
53, 4sylan2 274 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  -u B
)  =  ( -u B  x.  A )
)
6 mulcom 7068 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
76negeqd 7269 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  x.  B )  =  -u ( B  x.  A
) )
82, 5, 73eqtr4d 2098 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  -u B
)  =  -u ( A  x.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    = wceq 1259    e. wcel 1409  (class class class)co 5540   CCcc 6945    x. cmul 6952   -ucneg 7246
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-setind 4290  ax-resscn 7034  ax-1cn 7035  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-iota 4895  df-fun 4932  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-sub 7247  df-neg 7248
This theorem is referenced by:  mulneg12  7466  submul2  7468  mulsub  7470  mulneg2i  7474  mulneg2d  7481  zmulcl  8355  binom2sub  9531  cjreb  9694  recj  9695  reneg  9696  imcj  9703  imneg  9704  ipcnval  9714  cjneg  9718  odd2np1  10184
  Copyright terms: Public domain W3C validator