ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnnnq0 Unicode version

Theorem mulnnnq0 6606
Description: Multiplication of non-negative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 19-Nov-2019.)
Assertion
Ref Expression
mulnnnq0  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ] ~Q0 ·Q0  [ <. C ,  D >. ] ~Q0  )  =  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  )

Proof of Theorem mulnnnq0
Dummy variables  x  y  z  w  v  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4404 . . . 4  |-  ( ( A  e.  om  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( om  X.  N. ) )
2 enq0ex 6595 . . . . 5  |- ~Q0  e.  _V
32ecelqsi 6191 . . . 4  |-  ( <. A ,  B >.  e.  ( om  X.  N. )  ->  [ <. A ,  B >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
41, 3syl 14 . . 3  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  [ <. A ,  B >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
5 opelxpi 4404 . . . 4  |-  ( ( C  e.  om  /\  D  e.  N. )  -> 
<. C ,  D >.  e.  ( om  X.  N. ) )
62ecelqsi 6191 . . . 4  |-  ( <. C ,  D >.  e.  ( om  X.  N. )  ->  [ <. C ,  D >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
75, 6syl 14 . . 3  |-  ( ( C  e.  om  /\  D  e.  N. )  ->  [ <. C ,  D >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
84, 7anim12i 325 . 2  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  [ <. C ,  D >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) ) )
9 eqid 2056 . . . 4  |-  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0
10 eqid 2056 . . . 4  |-  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0
119, 10pm3.2i 261 . . 3  |-  ( [
<. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )
12 eqid 2056 . . 3  |-  [ <. ( A  .o  C ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0
13 opeq12 3579 . . . . . 6  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. w ,  v >.  =  <. A ,  B >. )
14 eceq1 6172 . . . . . . . . 9  |-  ( <.
w ,  v >.  =  <. A ,  B >.  ->  [ <. w ,  v >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  )
1514eqeq2d 2067 . . . . . . . 8  |-  ( <.
w ,  v >.  =  <. A ,  B >.  ->  ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  <->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  ) )
1615anbi1d 446 . . . . . . 7  |-  ( <.
w ,  v >.  =  <. A ,  B >.  ->  ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  ) 
<->  ( [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  ) ) )
17 vex 2577 . . . . . . . . . . 11  |-  w  e. 
_V
18 vex 2577 . . . . . . . . . . 11  |-  v  e. 
_V
1917, 18opth 4002 . . . . . . . . . 10  |-  ( <.
w ,  v >.  =  <. A ,  B >.  <-> 
( w  =  A  /\  v  =  B ) )
20 oveq1 5547 . . . . . . . . . . . 12  |-  ( w  =  A  ->  (
w  .o  C )  =  ( A  .o  C ) )
2120adantr 265 . . . . . . . . . . 11  |-  ( ( w  =  A  /\  v  =  B )  ->  ( w  .o  C
)  =  ( A  .o  C ) )
22 oveq1 5547 . . . . . . . . . . . 12  |-  ( v  =  B  ->  (
v  .o  D )  =  ( B  .o  D ) )
2322adantl 266 . . . . . . . . . . 11  |-  ( ( w  =  A  /\  v  =  B )  ->  ( v  .o  D
)  =  ( B  .o  D ) )
2421, 23opeq12d 3585 . . . . . . . . . 10  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. ( w  .o  C
) ,  ( v  .o  D ) >.  =  <. ( A  .o  C ) ,  ( B  .o  D )
>. )
2519, 24sylbi 118 . . . . . . . . 9  |-  ( <.
w ,  v >.  =  <. A ,  B >.  ->  <. ( w  .o  C ) ,  ( v  .o  D )
>.  =  <. ( A  .o  C ) ,  ( B  .o  D
) >. )
2625eceq1d 6173 . . . . . . . 8  |-  ( <.
w ,  v >.  =  <. A ,  B >.  ->  [ <. (
w  .o  C ) ,  ( v  .o  D ) >. ] ~Q0  =  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  )
2726eqeq2d 2067 . . . . . . 7  |-  ( <.
w ,  v >.  =  <. A ,  B >.  ->  ( [ <. ( A  .o  C ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
w  .o  C ) ,  ( v  .o  D ) >. ] ~Q0  <->  [ <. ( A  .o  C ) ,  ( B  .o  D )
>. ] ~Q0  =  [ <. ( A  .o  C ) ,  ( B  .o  D )
>. ] ~Q0  ) )
2816, 27anbi12d 450 . . . . . 6  |-  ( <.
w ,  v >.  =  <. A ,  B >.  ->  ( ( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  =  [ <. (
w  .o  C ) ,  ( v  .o  D ) >. ] ~Q0  )  <->  ( ( [
<. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  =  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  ) ) )
2913, 28syl 14 . . . . 5  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  =  [ <. (
w  .o  C ) ,  ( v  .o  D ) >. ] ~Q0  )  <->  ( ( [
<. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  =  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  ) ) )
3029spc2egv 2659 . . . 4  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  ( ( ( [
<. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  =  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  )  ->  E. w E. v ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  =  [ <. (
w  .o  C ) ,  ( v  .o  D ) >. ] ~Q0  ) ) )
31 opeq12 3579 . . . . . . 7  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. u ,  t >.  =  <. C ,  D >. )
32 eceq1 6172 . . . . . . . . . 10  |-  ( <.
u ,  t >.  =  <. C ,  D >.  ->  [ <. u ,  t >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )
3332eqeq2d 2067 . . . . . . . . 9  |-  ( <.
u ,  t >.  =  <. C ,  D >.  ->  ( [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  <->  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  ) )
3433anbi2d 445 . . . . . . . 8  |-  ( <.
u ,  t >.  =  <. C ,  D >.  ->  ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  ) 
<->  ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  ) ) )
35 vex 2577 . . . . . . . . . . . 12  |-  u  e. 
_V
36 vex 2577 . . . . . . . . . . . 12  |-  t  e. 
_V
3735, 36opth 4002 . . . . . . . . . . 11  |-  ( <.
u ,  t >.  =  <. C ,  D >.  <-> 
( u  =  C  /\  t  =  D ) )
38 oveq2 5548 . . . . . . . . . . . . 13  |-  ( u  =  C  ->  (
w  .o  u )  =  ( w  .o  C ) )
3938adantr 265 . . . . . . . . . . . 12  |-  ( ( u  =  C  /\  t  =  D )  ->  ( w  .o  u
)  =  ( w  .o  C ) )
40 oveq2 5548 . . . . . . . . . . . . 13  |-  ( t  =  D  ->  (
v  .o  t )  =  ( v  .o  D ) )
4140adantl 266 . . . . . . . . . . . 12  |-  ( ( u  =  C  /\  t  =  D )  ->  ( v  .o  t
)  =  ( v  .o  D ) )
4239, 41opeq12d 3585 . . . . . . . . . . 11  |-  ( ( u  =  C  /\  t  =  D )  -> 
<. ( w  .o  u
) ,  ( v  .o  t ) >.  =  <. ( w  .o  C ) ,  ( v  .o  D )
>. )
4337, 42sylbi 118 . . . . . . . . . 10  |-  ( <.
u ,  t >.  =  <. C ,  D >.  ->  <. ( w  .o  u ) ,  ( v  .o  t )
>.  =  <. ( w  .o  C ) ,  ( v  .o  D
) >. )
4443eceq1d 6173 . . . . . . . . 9  |-  ( <.
u ,  t >.  =  <. C ,  D >.  ->  [ <. (
w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  =  [ <. (
w  .o  C ) ,  ( v  .o  D ) >. ] ~Q0  )
4544eqeq2d 2067 . . . . . . . 8  |-  ( <.
u ,  t >.  =  <. C ,  D >.  ->  ( [ <. ( A  .o  C ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  <->  [ <. ( A  .o  C ) ,  ( B  .o  D )
>. ] ~Q0  =  [ <. ( w  .o  C ) ,  ( v  .o  D )
>. ] ~Q0  ) )
4634, 45anbi12d 450 . . . . . . 7  |-  ( <.
u ,  t >.  =  <. C ,  D >.  ->  ( ( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  =  [ <. (
w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  )  <->  ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  =  [ <. (
w  .o  C ) ,  ( v  .o  D ) >. ] ~Q0  ) ) )
4731, 46syl 14 . . . . . 6  |-  ( ( u  =  C  /\  t  =  D )  ->  ( ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  =  [ <. (
w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  )  <->  ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  =  [ <. (
w  .o  C ) ,  ( v  .o  D ) >. ] ~Q0  ) ) )
4847spc2egv 2659 . . . . 5  |-  ( ( C  e.  om  /\  D  e.  N. )  ->  ( ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  =  [ <. (
w  .o  C ) ,  ( v  .o  D ) >. ] ~Q0  )  ->  E. u E. t ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  =  [ <. (
w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
49482eximdv 1778 . . . 4  |-  ( ( C  e.  om  /\  D  e.  N. )  ->  ( E. w E. v ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  =  [ <. (
w  .o  C ) ,  ( v  .o  D ) >. ] ~Q0  )  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  =  [ <. (
w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
5030, 49sylan9 395 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  ( (
( [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. C ,  D >. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  )  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  =  [ <. (
w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
5111, 12, 50mp2ani 416 . 2  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  E. w E. v E. u E. t ( ( [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  =  [ <. (
w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  ) )
52 ecexg 6141 . . . 4  |-  ( ~Q0  e.  _V  ->  [ <. ( A  .o  C ) ,  ( B  .o  D )
>. ] ~Q0  e.  _V )
532, 52ax-mp 7 . . 3  |-  [ <. ( A  .o  C ) ,  ( B  .o  D ) >. ] ~Q0  e.  _V
54 eqeq1 2062 . . . . . . . 8  |-  ( x  =  [ <. A ,  B >. ] ~Q0  ->  ( x  =  [ <. w ,  v
>. ] ~Q0  <->  [
<. A ,  B >. ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  ) )
55 eqeq1 2062 . . . . . . . 8  |-  ( y  =  [ <. C ,  D >. ] ~Q0  ->  ( y  =  [ <. u ,  t
>. ] ~Q0  <->  [
<. C ,  D >. ] ~Q0  =  [ <. u ,  t
>. ] ~Q0  ) )
5654, 55bi2anan9 548 . . . . . . 7  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  )  ->  ( ( x  =  [ <. w ,  v
>. ] ~Q0  /\  y  =  [ <. u ,  t >. ] ~Q0  )  <-> 
( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  ) ) )
57 eqeq1 2062 . . . . . . 7  |-  ( z  =  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  ->  ( z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  <->  [
<. ( A  .o  C
) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  ) )
5856, 57bi2anan9 548 . . . . . 6  |-  ( ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  )  /\  z  =  [ <. ( A  .o  C ) ,  ( B  .o  D )
>. ] ~Q0  )  ->  ( ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  <-> 
( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
59583impa 1110 . . . . 5  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  )  ->  ( (
( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  ) 
<->  ( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
60594exbidv 1766 . . . 4  |-  ( ( x  =  [ <. A ,  B >. ] ~Q0  /\  y  =  [ <. C ,  D >. ] ~Q0  /\  z  =  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  )  ->  ( E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  )  <->  E. w E. v E. u E. t ( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  ) ) )
61 mulnq0mo 6604 . . . 4  |-  ( ( x  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  y  e.  ( ( om  X.  N. ) /. ~Q0  ) )  ->  E* z E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u ) ,  ( v  .o  t )
>. ] ~Q0  ) )
62 dfmq0qs 6585 . . . 4  |- ·Q0 
=  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  y  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  t ) >. ] ~Q0  ) ) }
6360, 61, 62ovig 5650 . . 3  |-  ( ( [ <. A ,  B >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  [ <. C ,  D >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D ) >. ] ~Q0  e.  _V )  -> 
( E. w E. v E. u E. t
( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  )  ->  ( [ <. A ,  B >. ] ~Q0 ·Q0  [ <. C ,  D >. ] ~Q0  )  =  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  ) )
6453, 63mp3an3 1232 . 2  |-  ( ( [ <. A ,  B >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  [ <. C ,  D >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )  ->  ( E. w E. v E. u E. t ( ( [ <. A ,  B >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  /\  [ <. C ,  D >. ] ~Q0  =  [ <. u ,  t >. ] ~Q0  )  /\  [ <. ( A  .o  C ) ,  ( B  .o  D ) >. ] ~Q0  =  [ <. (
w  .o  u ) ,  ( v  .o  t ) >. ] ~Q0  )  ->  ( [ <. A ,  B >. ] ~Q0 ·Q0  [ <. C ,  D >. ] ~Q0  )  =  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  ) )
658, 51, 64sylc 60 1  |-  ( ( ( A  e.  om  /\  B  e.  N. )  /\  ( C  e.  om  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ] ~Q0 ·Q0  [ <. C ,  D >. ] ~Q0  )  =  [ <. ( A  .o  C ) ,  ( B  .o  D
) >. ] ~Q0  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    /\ w3a 896    = wceq 1259   E.wex 1397    e. wcel 1409   _Vcvv 2574   <.cop 3406   omcom 4341    X. cxp 4371  (class class class)co 5540    .o comu 6030   [cec 6135   /.cqs 6136   N.cnpi 6428   ~Q0 ceq0 6442   ·Q0 cmq0 6446
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-id 4058  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-mi 6462  df-enq0 6580  df-nq0 6581  df-mq0 6584
This theorem is referenced by:  mulclnq0  6608  nqnq0m  6611  nq0m0r  6612  distrnq0  6615  mulcomnq0  6616  nq02m  6621
  Copyright terms: Public domain W3C validator