ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqprlemru Unicode version

Theorem mulnqprlemru 6730
Description: Lemma for mulnqpr 6733. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
Assertion
Ref Expression
mulnqprlemru  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  |  l 
<Q  ( A  .Q  B
) } ,  {
u  |  ( A  .Q  B )  <Q  u } >. ) )
Distinct variable groups:    A, l, u    B, l, u

Proof of Theorem mulnqprlemru
Dummy variables  f  g  h  r  s  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqprlu 6703 . . . . . 6  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
2 nqprlu 6703 . . . . . 6  |-  ( B  e.  Q.  ->  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  e.  P. )
3 df-imp 6625 . . . . . . 7  |-  .P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  x )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  .Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  x )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  .Q  h
) ) } >. )
4 mulclnq 6532 . . . . . . 7  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
53, 4genpelvu 6669 . . . . . 6  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  B } ,  {
u  |  B  <Q  u } >.  e.  P. )  ->  ( r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  E. s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
r  =  ( s  .Q  t ) ) )
61, 2, 5syl2an 277 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  E. s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
r  =  ( s  .Q  t ) ) )
76biimpa 284 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )  ->  E. s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
r  =  ( s  .Q  t ) )
8 vex 2577 . . . . . . . . . . . . 13  |-  s  e. 
_V
9 breq2 3796 . . . . . . . . . . . . 13  |-  ( u  =  s  ->  ( A  <Q  u  <->  A  <Q  s ) )
10 ltnqex 6705 . . . . . . . . . . . . . 14  |-  { l  |  l  <Q  A }  e.  _V
11 gtnqex 6706 . . . . . . . . . . . . . 14  |-  { u  |  A  <Q  u }  e.  _V
1210, 11op2nd 5802 . . . . . . . . . . . . 13  |-  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  =  { u  |  A  <Q  u }
138, 9, 12elab2 2713 . . . . . . . . . . . 12  |-  ( s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  A  <Q  s )
1413biimpi 117 . . . . . . . . . . 11  |-  ( s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  ->  A  <Q  s )
1514ad2antrl 467 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  ->  A  <Q  s )
1615adantr 265 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  .Q  t ) )  ->  A  <Q  s )
17 vex 2577 . . . . . . . . . . . . 13  |-  t  e. 
_V
18 breq2 3796 . . . . . . . . . . . . 13  |-  ( u  =  t  ->  ( B  <Q  u  <->  B  <Q  t ) )
19 ltnqex 6705 . . . . . . . . . . . . . 14  |-  { l  |  l  <Q  B }  e.  _V
20 gtnqex 6706 . . . . . . . . . . . . . 14  |-  { u  |  B  <Q  u }  e.  _V
2119, 20op2nd 5802 . . . . . . . . . . . . 13  |-  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  =  { u  |  B  <Q  u }
2217, 18, 21elab2 2713 . . . . . . . . . . . 12  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  <->  B  <Q  t )
2322biimpi 117 . . . . . . . . . . 11  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  ->  B  <Q  t )
2423ad2antll 468 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  ->  B  <Q  t )
2524adantr 265 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  .Q  t ) )  ->  B  <Q  t )
26 ltrelnq 6521 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
2726brel 4420 . . . . . . . . . . 11  |-  ( A 
<Q  s  ->  ( A  e.  Q.  /\  s  e.  Q. ) )
2816, 27syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  .Q  t ) )  -> 
( A  e.  Q.  /\  s  e.  Q. )
)
2926brel 4420 . . . . . . . . . . 11  |-  ( B 
<Q  t  ->  ( B  e.  Q.  /\  t  e.  Q. ) )
3025, 29syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  .Q  t ) )  -> 
( B  e.  Q.  /\  t  e.  Q. )
)
31 lt2mulnq 6561 . . . . . . . . . 10  |-  ( ( ( A  e.  Q.  /\  s  e.  Q. )  /\  ( B  e.  Q.  /\  t  e.  Q. )
)  ->  ( ( A  <Q  s  /\  B  <Q  t )  ->  ( A  .Q  B )  <Q 
( s  .Q  t
) ) )
3228, 30, 31syl2anc 397 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  .Q  t ) )  -> 
( ( A  <Q  s  /\  B  <Q  t
)  ->  ( A  .Q  B )  <Q  (
s  .Q  t ) ) )
3316, 25, 32mp2and 417 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  .Q  t ) )  -> 
( A  .Q  B
)  <Q  ( s  .Q  t ) )
34 breq2 3796 . . . . . . . . 9  |-  ( r  =  ( s  .Q  t )  ->  (
( A  .Q  B
)  <Q  r  <->  ( A  .Q  B )  <Q  (
s  .Q  t ) ) )
3534adantl 266 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  .Q  t ) )  -> 
( ( A  .Q  B )  <Q  r  <->  ( A  .Q  B ) 
<Q  ( s  .Q  t
) ) )
3633, 35mpbird 160 . . . . . . 7  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  .Q  t ) )  -> 
( A  .Q  B
)  <Q  r )
37 vex 2577 . . . . . . . 8  |-  r  e. 
_V
38 breq2 3796 . . . . . . . 8  |-  ( u  =  r  ->  (
( A  .Q  B
)  <Q  u  <->  ( A  .Q  B )  <Q  r
) )
39 ltnqex 6705 . . . . . . . . 9  |-  { l  |  l  <Q  ( A  .Q  B ) }  e.  _V
40 gtnqex 6706 . . . . . . . . 9  |-  { u  |  ( A  .Q  B )  <Q  u }  e.  _V
4139, 40op2nd 5802 . . . . . . . 8  |-  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >. )  =  {
u  |  ( A  .Q  B )  <Q  u }
4237, 38, 41elab2 2713 . . . . . . 7  |-  ( r  e.  ( 2nd `  <. { l  |  l  <Q 
( A  .Q  B
) } ,  {
u  |  ( A  .Q  B )  <Q  u } >. )  <->  ( A  .Q  B )  <Q  r
)
4336, 42sylibr 141 . . . . . 6  |-  ( ( ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  r  =  ( s  .Q  t ) )  -> 
r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >. ) )
4443ex 112 . . . . 5  |-  ( ( ( ( A  e. 
Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
) )  ->  (
r  =  ( s  .Q  t )  -> 
r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >. ) ) )
4544rexlimdvva 2457 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )  -> 
( E. s  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) r  =  ( s  .Q  t )  ->  r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B
)  <Q  u } >. ) ) )
467, 45mpd 13 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  r  e.  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )  -> 
r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >. ) )
4746ex 112 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( r  e.  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  ->  r  e.  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B
)  <Q  u } >. ) ) )
4847ssrdv 2979 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  |  l 
<Q  ( A  .Q  B
) } ,  {
u  |  ( A  .Q  B )  <Q  u } >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    = wceq 1259    e. wcel 1409   {cab 2042   E.wrex 2324    C_ wss 2945   <.cop 3406   class class class wbr 3792   ` cfv 4930  (class class class)co 5540   2ndc2nd 5794   Q.cnq 6436    .Q cmq 6439    <Q cltq 6441   P.cnp 6447    .P. cmp 6450
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-inp 6622  df-imp 6625
This theorem is referenced by:  mulnqprlemfl  6731  mulnqpr  6733
  Copyright terms: Public domain W3C validator