ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulpiord Unicode version

Theorem mulpiord 6621
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
mulpiord  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )

Proof of Theorem mulpiord
StepHypRef Expression
1 opelxpi 4422 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
2 fvres 5250 . . 3  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( (  .o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )  =  (  .o  `  <. A ,  B >. )
)
3 df-ov 5566 . . . 4  |-  ( A  .N  B )  =  (  .N  `  <. A ,  B >. )
4 df-mi 6610 . . . . 5  |-  .N  =  (  .o  |`  ( N.  X.  N. ) )
54fveq1i 5230 . . . 4  |-  (  .N 
`  <. A ,  B >. )  =  ( (  .o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )
63, 5eqtri 2103 . . 3  |-  ( A  .N  B )  =  ( (  .o  |`  ( N.  X.  N. ) ) `
 <. A ,  B >. )
7 df-ov 5566 . . 3  |-  ( A  .o  B )  =  (  .o  `  <. A ,  B >. )
82, 6, 73eqtr4g 2140 . 2  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( A  .N  B )  =  ( A  .o  B ) )
91, 8syl 14 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   <.cop 3419    X. cxp 4389    |` cres 4393   ` cfv 4952  (class class class)co 5563    .o comu 6083   N.cnpi 6576    .N cmi 6578
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-xp 4397  df-res 4403  df-iota 4917  df-fv 4960  df-ov 5566  df-mi 6610
This theorem is referenced by:  mulidpi  6622  mulclpi  6632  mulcompig  6635  mulasspig  6636  distrpig  6637  mulcanpig  6639  ltmpig  6643  archnqq  6721  enq0enq  6735  addcmpblnq0  6747  mulcmpblnq0  6748  mulcanenq0ec  6749  addclnq0  6755  mulclnq0  6756  nqpnq0nq  6757  nqnq0a  6758  nqnq0m  6759  nq0m0r  6760  distrnq0  6763  addassnq0lemcl  6765
  Copyright terms: Public domain W3C validator