ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulreim Unicode version

Theorem mulreim 7841
Description: Complex multiplication in terms of real and imaginary parts. (Contributed by Jim Kingdon, 23-Feb-2020.)
Assertion
Ref Expression
mulreim  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  =  ( ( ( A  x.  C )  +  -u ( B  x.  D ) )  +  ( _i  x.  (
( C  x.  B
)  +  ( D  x.  A ) ) ) ) )

Proof of Theorem mulreim
StepHypRef Expression
1 simpll 496 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  A  e.  RR )
21recnd 7279 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  A  e.  CC )
3 ax-icn 7203 . . . . 5  |-  _i  e.  CC
43a1i 9 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  _i  e.  CC )
5 simplr 497 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  B  e.  RR )
65recnd 7279 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  B  e.  CC )
74, 6mulcld 7271 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( _i  x.  B
)  e.  CC )
8 simprl 498 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  RR )
98recnd 7279 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  CC )
10 simprr 499 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR )
1110recnd 7279 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  CC )
124, 11mulcld 7271 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( _i  x.  D
)  e.  CC )
132, 7, 9, 12muladdd 7657 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  =  ( ( ( A  x.  C )  +  ( ( _i  x.  D )  x.  ( _i  x.  B
) ) )  +  ( ( A  x.  ( _i  x.  D
) )  +  ( C  x.  ( _i  x.  B ) ) ) ) )
144, 11, 4, 6mul4d 7400 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( _i  x.  D )  x.  (
_i  x.  B )
)  =  ( ( _i  x.  _i )  x.  ( D  x.  B ) ) )
15 ixi 7820 . . . . . . 7  |-  ( _i  x.  _i )  = 
-u 1
1615oveq1i 5574 . . . . . 6  |-  ( ( _i  x.  _i )  x.  ( D  x.  B ) )  =  ( -u 1  x.  ( D  x.  B
) )
1714, 16syl6eq 2131 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( _i  x.  D )  x.  (
_i  x.  B )
)  =  ( -u
1  x.  ( D  x.  B ) ) )
1811, 6mulcld 7271 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( D  x.  B
)  e.  CC )
1918mulm1d 7651 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( -u 1  x.  ( D  x.  B )
)  =  -u ( D  x.  B )
)
2011, 6mulcomd 7272 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( D  x.  B
)  =  ( B  x.  D ) )
2120negeqd 7440 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  -u ( D  x.  B
)  =  -u ( B  x.  D )
)
2217, 19, 213eqtrd 2119 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( _i  x.  D )  x.  (
_i  x.  B )
)  =  -u ( B  x.  D )
)
2322oveq2d 5580 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  x.  C )  +  ( ( _i  x.  D
)  x.  ( _i  x.  B ) ) )  =  ( ( A  x.  C )  +  -u ( B  x.  D ) ) )
2411, 2mulcld 7271 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( D  x.  A
)  e.  CC )
254, 24mulcld 7271 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( _i  x.  ( D  x.  A )
)  e.  CC )
269, 6mulcld 7271 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  x.  B
)  e.  CC )
274, 26mulcld 7271 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( _i  x.  ( C  x.  B )
)  e.  CC )
2825, 27addcomd 7396 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( _i  x.  ( D  x.  A
) )  +  ( _i  x.  ( C  x.  B ) ) )  =  ( ( _i  x.  ( C  x.  B ) )  +  ( _i  x.  ( D  x.  A
) ) ) )
292, 4, 11mul12d 7397 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  x.  (
_i  x.  D )
)  =  ( _i  x.  ( A  x.  D ) ) )
302, 11mulcomd 7272 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  x.  D
)  =  ( D  x.  A ) )
3130oveq2d 5580 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( _i  x.  ( A  x.  D )
)  =  ( _i  x.  ( D  x.  A ) ) )
3229, 31eqtrd 2115 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  x.  (
_i  x.  D )
)  =  ( _i  x.  ( D  x.  A ) ) )
339, 4, 6mul12d 7397 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  x.  (
_i  x.  B )
)  =  ( _i  x.  ( C  x.  B ) ) )
3432, 33oveq12d 5582 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  x.  ( _i  x.  D
) )  +  ( C  x.  ( _i  x.  B ) ) )  =  ( ( _i  x.  ( D  x.  A ) )  +  ( _i  x.  ( C  x.  B
) ) ) )
354, 26, 24adddid 7275 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( _i  x.  (
( C  x.  B
)  +  ( D  x.  A ) ) )  =  ( ( _i  x.  ( C  x.  B ) )  +  ( _i  x.  ( D  x.  A
) ) ) )
3628, 34, 353eqtr4d 2125 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  x.  ( _i  x.  D
) )  +  ( C  x.  ( _i  x.  B ) ) )  =  ( _i  x.  ( ( C  x.  B )  +  ( D  x.  A
) ) ) )
3723, 36oveq12d 5582 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( A  x.  C )  +  ( ( _i  x.  D )  x.  (
_i  x.  B )
) )  +  ( ( A  x.  (
_i  x.  D )
)  +  ( C  x.  ( _i  x.  B ) ) ) )  =  ( ( ( A  x.  C
)  +  -u ( B  x.  D )
)  +  ( _i  x.  ( ( C  x.  B )  +  ( D  x.  A
) ) ) ) )
3813, 37eqtrd 2115 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  =  ( ( ( A  x.  C )  +  -u ( B  x.  D ) )  +  ( _i  x.  (
( C  x.  B
)  +  ( D  x.  A ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434  (class class class)co 5564   CCcc 7111   RRcr 7112   1c1 7114   _ici 7115    + caddc 7116    x. cmul 7118   -ucneg 7417
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-setind 4308  ax-resscn 7200  ax-1cn 7201  ax-icn 7203  ax-addcl 7204  ax-addrcl 7205  ax-mulcl 7206  ax-addcom 7208  ax-mulcom 7209  ax-addass 7210  ax-mulass 7211  ax-distr 7212  ax-i2m1 7213  ax-1rid 7215  ax-0id 7216  ax-rnegex 7217  ax-cnre 7219
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-sub 7418  df-neg 7419
This theorem is referenced by:  mulext1  7849
  Copyright terms: Public domain W3C validator