ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0r Unicode version

Theorem n0r 3262
Description: An inhabited class is nonempty. See n0rf 3261 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.)
Assertion
Ref Expression
n0r  |-  ( E. x  x  e.  A  ->  A  =/=  (/) )
Distinct variable group:    x, A

Proof of Theorem n0r
StepHypRef Expression
1 nfcv 2194 . 2  |-  F/_ x A
21n0rf 3261 1  |-  ( E. x  x  e.  A  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1397    e. wcel 1409    =/= wne 2220   (/)c0 3252
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-v 2576  df-dif 2948  df-nul 3253
This theorem is referenced by:  neq0r  3263  opnzi  4000  elqsn0  6206  fin0  6373
  Copyright terms: Public domain W3C validator