ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndvdsadd Unicode version

Theorem ndvdsadd 10475
Description: Corollary of the division algorithm. If an integer  D greater than  1 divides  N, then it does not divide any of  N  +  1,  N  +  2...  N  +  ( D  -  1 ). (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
ndvdsadd  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( D  ||  N  ->  -.  D  ||  ( N  +  K )
) )

Proof of Theorem ndvdsadd
StepHypRef Expression
1 nnre 8113 . . . . . . . . 9  |-  ( K  e.  NN  ->  K  e.  RR )
2 nnre 8113 . . . . . . . . 9  |-  ( D  e.  NN  ->  D  e.  RR )
3 posdif 7626 . . . . . . . . 9  |-  ( ( K  e.  RR  /\  D  e.  RR )  ->  ( K  <  D  <->  0  <  ( D  -  K ) ) )
41, 2, 3syl2anr 284 . . . . . . . 8  |-  ( ( D  e.  NN  /\  K  e.  NN )  ->  ( K  <  D  <->  0  <  ( D  -  K ) ) )
54pm5.32i 442 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  K  e.  NN )  /\  K  <  D
)  <->  ( ( D  e.  NN  /\  K  e.  NN )  /\  0  <  ( D  -  K
) ) )
6 nnz 8451 . . . . . . . . 9  |-  ( D  e.  NN  ->  D  e.  ZZ )
7 nnz 8451 . . . . . . . . 9  |-  ( K  e.  NN  ->  K  e.  ZZ )
8 zsubcl 8473 . . . . . . . . 9  |-  ( ( D  e.  ZZ  /\  K  e.  ZZ )  ->  ( D  -  K
)  e.  ZZ )
96, 7, 8syl2an 283 . . . . . . . 8  |-  ( ( D  e.  NN  /\  K  e.  NN )  ->  ( D  -  K
)  e.  ZZ )
10 elnnz 8442 . . . . . . . . 9  |-  ( ( D  -  K )  e.  NN  <->  ( ( D  -  K )  e.  ZZ  /\  0  < 
( D  -  K
) ) )
1110biimpri 131 . . . . . . . 8  |-  ( ( ( D  -  K
)  e.  ZZ  /\  0  <  ( D  -  K ) )  -> 
( D  -  K
)  e.  NN )
129, 11sylan 277 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  K  e.  NN )  /\  0  <  ( D  -  K )
)  ->  ( D  -  K )  e.  NN )
135, 12sylbi 119 . . . . . 6  |-  ( ( ( D  e.  NN  /\  K  e.  NN )  /\  K  <  D
)  ->  ( D  -  K )  e.  NN )
1413anasss 391 . . . . 5  |-  ( ( D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  ->  ( D  -  K )  e.  NN )
15 nngt0 8131 . . . . . . . 8  |-  ( K  e.  NN  ->  0  <  K )
16 ltsubpos 7625 . . . . . . . . . . 11  |-  ( ( K  e.  RR  /\  D  e.  RR )  ->  ( 0  <  K  <->  ( D  -  K )  <  D ) )
171, 2, 16syl2an 283 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  D  e.  NN )  ->  ( 0  <  K  <->  ( D  -  K )  <  D ) )
1817biimpd 142 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  D  e.  NN )  ->  ( 0  <  K  ->  ( D  -  K
)  <  D )
)
1918expcom 114 . . . . . . . 8  |-  ( D  e.  NN  ->  ( K  e.  NN  ->  ( 0  <  K  -> 
( D  -  K
)  <  D )
) )
2015, 19mpdi 42 . . . . . . 7  |-  ( D  e.  NN  ->  ( K  e.  NN  ->  ( D  -  K )  <  D ) )
2120imp 122 . . . . . 6  |-  ( ( D  e.  NN  /\  K  e.  NN )  ->  ( D  -  K
)  <  D )
2221adantrr 463 . . . . 5  |-  ( ( D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  ->  ( D  -  K )  <  D
)
2314, 22jca 300 . . . 4  |-  ( ( D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  ->  ( ( D  -  K )  e.  NN  /\  ( D  -  K )  < 
D ) )
24233adant1 957 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( ( D  -  K )  e.  NN  /\  ( D  -  K
)  <  D )
)
25 ndvdssub 10474 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  (
( D  -  K
)  e.  NN  /\  ( D  -  K
)  <  D )
)  ->  ( D  ||  N  ->  -.  D  ||  ( N  -  ( D  -  K )
) ) )
2624, 25syld3an3 1215 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( D  ||  N  ->  -.  D  ||  ( N  -  ( D  -  K ) ) ) )
27 zaddcl 8472 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K
)  e.  ZZ )
287, 27sylan2 280 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  K  e.  NN )  ->  ( N  +  K
)  e.  ZZ )
29 dvdssubr 10386 . . . . . . . 8  |-  ( ( D  e.  ZZ  /\  ( N  +  K
)  e.  ZZ )  ->  ( D  ||  ( N  +  K
)  <->  D  ||  ( ( N  +  K )  -  D ) ) )
306, 28, 29syl2an 283 . . . . . . 7  |-  ( ( D  e.  NN  /\  ( N  e.  ZZ  /\  K  e.  NN ) )  ->  ( D  ||  ( N  +  K
)  <->  D  ||  ( ( N  +  K )  -  D ) ) )
3130an12s 530 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( D  e.  NN  /\  K  e.  NN ) )  ->  ( D  ||  ( N  +  K
)  <->  D  ||  ( ( N  +  K )  -  D ) ) )
32313impb 1135 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  K  e.  NN )  ->  ( D  ||  ( N  +  K )  <->  D  ||  (
( N  +  K
)  -  D ) ) )
33 zcn 8437 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
34 nncn 8114 . . . . . . 7  |-  ( D  e.  NN  ->  D  e.  CC )
35 nncn 8114 . . . . . . 7  |-  ( K  e.  NN  ->  K  e.  CC )
36 subsub3 7407 . . . . . . 7  |-  ( ( N  e.  CC  /\  D  e.  CC  /\  K  e.  CC )  ->  ( N  -  ( D  -  K ) )  =  ( ( N  +  K )  -  D
) )
3733, 34, 35, 36syl3an 1212 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  K  e.  NN )  ->  ( N  -  ( D  -  K ) )  =  ( ( N  +  K )  -  D
) )
3837breq2d 3805 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  K  e.  NN )  ->  ( D  ||  ( N  -  ( D  -  K
) )  <->  D  ||  (
( N  +  K
)  -  D ) ) )
3932, 38bitr4d 189 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  K  e.  NN )  ->  ( D  ||  ( N  +  K )  <->  D  ||  ( N  -  ( D  -  K ) ) ) )
4039notbid 625 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  K  e.  NN )  ->  ( -.  D  ||  ( N  +  K )  <->  -.  D  ||  ( N  -  ( D  -  K )
) ) )
41403adant3r 1167 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( -.  D  ||  ( N  +  K
)  <->  -.  D  ||  ( N  -  ( D  -  K ) ) ) )
4226, 41sylibrd 167 1  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( D  ||  N  ->  -.  D  ||  ( N  +  K )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    = wceq 1285    e. wcel 1434   class class class wbr 3793  (class class class)co 5543   CCcc 7041   RRcr 7042   0cc0 7043    + caddc 7046    < clt 7215    - cmin 7346   NNcn 8106   ZZcz 8432    || cdvds 10340
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156  ax-arch 7157
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-if 3360  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-ilim 4132  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-frec 6040  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-2 8165  df-n0 8356  df-z 8433  df-uz 8701  df-q 8786  df-rp 8816  df-fl 9352  df-mod 9405  df-iseq 9522  df-iexp 9573  df-cj 9867  df-re 9868  df-im 9869  df-rsqrt 10022  df-abs 10023  df-dvds 10341
This theorem is referenced by:  ndvdsp1  10476  ndvdsi  10477
  Copyright terms: Public domain W3C validator