![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ne0i | Unicode version |
Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2616. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
ne0i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 3263 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | neneqad 2325 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-v 2604 df-dif 2976 df-nul 3259 |
This theorem is referenced by: vn0 3265 inelcm 3311 rzal 3346 rexn0 3347 snnzg 3515 prnz 3520 tpnz 3523 onn0 4163 nn0eln0 4367 ordge1n0im 6083 nnmord 6156 phpm 6400 addclpi 6579 mulclpi 6580 uzn0 8715 iccsupr 9065 |
Copyright terms: Public domain | W3C validator |